@GSMC/서용덕: Convex Optimization
[Boyd & Vandenberghe] Chapter 3 Convex Functions
maetel
2009. 2. 23. 21:00
lecture 3 video
lecture 4 video
@ Stanford Engineering Everywhere
Linear Systems and Optimization | Convex Optimization I
Instructor: Boyd, Stephen
EE364a: Convex Optimization I
Professor Stephen Boyd, Stanford University, Winter Quarter 2007–08
3.1.1 Definition
http://en.wikipedia.org/wiki/Convex_function
a function is convex if and only if its epigraph (the set of points lying on or above the graph) is a convex set
Pictorially, a function is called 'convex' if the function lies below the straight line segment connecting two points, for any two points in the interval
3.1.2 Extended-value extensions
http://en.wikipedia.org/wiki/Indicator_function
3.1.3 First-order conditions
http://en.wikipedia.org/wiki/Taylor_approximation
3.1.4 Second-order conditions
3.1.5 Examples
3.1.6 Sublevel sets
3.1.7 Epigraph
3.1.8 Jensen's inequality and extensions
3.1.9 Inequalities
3.2.1 Nonnegative weighted sums
3.2.2 Composition with an affine mapping
3.2.3 Pointwise maximum and supremum
3,2.4 Composition
3.2.5 Minimization
3.2.6 Perspective of a function
3.3.1 Definition and examples
http://en.wikipedia.org/wiki/Convex_conjugate
3.3.2 Basic properties
3.4.1 Definition and examples
http://en.wikipedia.org/wiki/Quasiconvex_function
A quasiconvex function is a real-valued function defined on an interval or on a convex subset of a real vector space such that the inverse image of any set of the form is a convex set.
3.4.2 Basic properties
3.4.3 Differentiable quasiconvex functions
3.4.4 Operations that preserve quasiconvexity
3.4.5 Representation via family of convex functions
3.5.1 Definition
http://en.wikipedia.org/wiki/Logarithmically_concave_function
http://en.wikipedia.org/wiki/Logarithmically_convex_function
an indicator function or a characteristic function is a function defined on a set X that indicates membership of an element in a subset A of X.
http://en.wikipedia.org/wiki/Geometric_mean
http://en.wikipedia.org/wiki/Bohr%E2%80%93Mollerup_theorem
ref.
http://mathworld.wolfram.com/GammaFunction.html
Convexity in the theory of the gamma function
International Journal of Applied Mathematics & Statistics , Nov, 2007 by Milan Merkle
THU NGỌC DƯƠNG, THE GAMMA FUNCTION
Mohamed A. Khamsi, The Gamma Function
http://en.wikipedia.org/wiki/Determinant
http://mathworld.wolfram.com/Determinant.html
http://en.wikipedia.org/wiki/Lebesgue_measure
http://en.wikipedia.org/wiki/Laplace_transform
http://mathworld.wolfram.com/LaplaceTransform.html
ref.
Ernesto Schirmacher <Log-Concavity and the Exponential Formula>
András Prékopa, Logarithmic Concave Measures with Applications to Stochastic Programming, 1971
András Prékopa, On logarithmic concave measures and functions, 1973
András Prékopa, Logarithmic Concave Measures and Related Topics, 1980
Ole E. Barndorff-Nielsen,
Bruce E. Sagan, Log Concave Sequences of Symmetric Functions and Analogs of the Jacobi-Trudi Determinants. 1992
Thomas M. Cover and A. Thomas, Determinant Inequalities via Information Theory
3.5.2 Properties
http://en.wikipedia.org/wiki/Cumulative_distribution_function
http://en.wikipedia.org/wiki/Polyhedron
3.6.1 Monotonocity with respect to a generalized inequality
3.6.2 Convexity with respect to a generalized inequality
lecture 4 video
@ Stanford Engineering Everywhere
Linear Systems and Optimization | Convex Optimization I
Instructor: Boyd, Stephen
EE364a: Convex Optimization I
Professor Stephen Boyd, Stanford University, Winter Quarter 2007–08
3.1 Basic properties and examples
3.1.1 Definition
http://en.wikipedia.org/wiki/Convex_function
a function is convex if and only if its epigraph (the set of points lying on or above the graph) is a convex set
Pictorially, a function is called 'convex' if the function lies below the straight line segment connecting two points, for any two points in the interval
3.1.2 Extended-value extensions
http://en.wikipedia.org/wiki/Indicator_function
3.1.3 First-order conditions
http://en.wikipedia.org/wiki/Taylor_approximation
3.1.4 Second-order conditions
3.1.5 Examples
3.1.6 Sublevel sets
3.1.7 Epigraph
3.1.8 Jensen's inequality and extensions
3.1.9 Inequalities
3.2 Operations that preserve convexity
3.2.1 Nonnegative weighted sums
3.2.2 Composition with an affine mapping
3.2.3 Pointwise maximum and supremum
3,2.4 Composition
3.2.5 Minimization
3.2.6 Perspective of a function
3.3 The conjugate function
3.3.1 Definition and examples
http://en.wikipedia.org/wiki/Convex_conjugate
3.3.2 Basic properties
3.4 Quasiconvex functions
3.4.1 Definition and examples
http://en.wikipedia.org/wiki/Quasiconvex_function
A quasiconvex function is a real-valued function defined on an interval or on a convex subset of a real vector space such that the inverse image of any set of the form is a convex set.
3.4.2 Basic properties
3.4.3 Differentiable quasiconvex functions
3.4.4 Operations that preserve quasiconvexity
3.4.5 Representation via family of convex functions
3.5 Log-concave and log-convex functions
3.5.1 Definition
http://en.wikipedia.org/wiki/Logarithmically_concave_function
http://en.wikipedia.org/wiki/Logarithmically_convex_function
an indicator function or a characteristic function is a function defined on a set X that indicates membership of an element in a subset A of X.
http://en.wikipedia.org/wiki/Geometric_mean
http://en.wikipedia.org/wiki/Bohr%E2%80%93Mollerup_theorem
ref.
http://mathworld.wolfram.com/GammaFunction.html
Convexity in the theory of the gamma function
International Journal of Applied Mathematics & Statistics , Nov, 2007 by Milan Merkle
THU NGỌC DƯƠNG, THE GAMMA FUNCTION
Mohamed A. Khamsi, The Gamma Function
http://en.wikipedia.org/wiki/Determinant
http://mathworld.wolfram.com/Determinant.html
http://en.wikipedia.org/wiki/Lebesgue_measure
http://en.wikipedia.org/wiki/Laplace_transform
http://mathworld.wolfram.com/LaplaceTransform.html
ref.
Ernesto Schirmacher <Log-Concavity and the Exponential Formula>
András Prékopa, Logarithmic Concave Measures with Applications to Stochastic Programming, 1971
András Prékopa, On logarithmic concave measures and functions, 1973
András Prékopa, Logarithmic Concave Measures and Related Topics, 1980
Ole E. Barndorff-Nielsen,
Bruce E. Sagan, Log Concave Sequences of Symmetric Functions and Analogs of the Jacobi-Trudi Determinants. 1992
Thomas M. Cover and A. Thomas, Determinant Inequalities via Information Theory
3.5.2 Properties
http://en.wikipedia.org/wiki/Cumulative_distribution_function
http://en.wikipedia.org/wiki/Polyhedron
3.6 Convexity with respect to generalized inequalities
3.6.1 Monotonocity with respect to a generalized inequality
3.6.2 Convexity with respect to a generalized inequality