Computer Vision

virtual studio 구현: camera calibration test

maetel 2010. 5. 18. 00:26
ref.
2010/02/10 - [Visual Information Processing Lab] - R. Y. Tsai "A Versatile Camera Calibration Technique for High Accuracy 3-D Maching Vision Metrology Using Off-the-shelf TV Cameras and Lenses"


(1) 고정되어 있는 것으로 가정한 카메라의 내부 파라미터 값들을 구하고 (2) 실시간으로 들어오는 이미지 프레임마다 카메라의 회전과 이동을 계산하기 위하여 Tsai 알고리즘을 쓰기로 하고, C 또는 C++로 구현된 소스코드 또는 라이브러리를 찾아서 붙여 보기로 한다.


Try #1.
처음에는 CMU의 Reg Willson가 C로 짠 Tsai Camera Calibration 코드 에서 필요한 부분을 include하여 쓰려고 했는데, C++ 문법에 맞지 않는 구식 C 문법으로 코딩된 부분이 많아서 고치는 데 애를 먹었다. (Xcode의 C++ 프로젝트에서 .c 파일을 include하면 compile은 되지만, linking error가 난다. 때문에 .c를 .cpp로 바꾸어야 함.)  그런데 결정적으로, "cal_main.cpp" 파일에 정의된, 캘리브레이션의 최종 결과값을 주는 함수들이 호출하는 optimization을 실행하는 함수 lmdif_()가  Fortan 파일 "lmdif.f"에 정의되어 있고, Fortran을 C로 변환해 주는 "f2c.h"에 의해 이것을 "lmdif.c"로 하여 가지고 있다는 문제가 있었다. lmdif.c를 lmdif.cpp 형태로 만들기 위해서는 Fortran 언어와 Fortran을 C++로 변환하는 방법을 알아야 하므로, 결국 포기했다.



Try #2.
Michigan State University Charles B. Owen Display-Relative Calibration (DRC)을 구현한 DRC 프로그램( DRC.zip )에서 카메라 캘리브레이션에 Tsai의 알고리즘 libtsai.zip을 쓰고 있다. 이 라이브러리는 위의 C 코드를 C++로 수정하면서 "CTsai"라는 클래스를 사용하고 여러 함수들을 수정/보완/결합한 것인데, Visual Studio 용 프로젝트 프로그램을 만들면서 Windows 환경에 기반하여 MFC를 활용하였다. 그래서 이것을 나의 Mac OS X 기반 Xcode 프로젝트에서 그대로 가져다 쓸 수는 없다. 용법은 다음과 같다.

DRC/DisplayRelativeCalibration.cpp:
bool CDisplayRelativeCalibration::ComputeCameraCalibration(void)
{
    CTsai tsai;

    tsai.Width(m_camerawid);
    tsai.Height(m_camerahit);

    for(std::list<Corr>::const_iterator i=m_cameracorr.begin();  i!=m_cameracorr.end();  i++)
    {
        tsai.Point(i->x, i->y, i->z, i->u, i->v);
    }

    if(tsai.PointCount() < 8)
        return Error("Didn't get enough points");

    if(!tsai.Compute())
        return Error("Camera calibration failed");

    for(int n=0;  n<tsai.PointCount();  n++)
    {
        double ux, uy;
        tsai.WorldToImage (tsai.PointX(n), tsai.PointY(n), tsai.PointZ(n), ux, uy);

        m_cameraproj.push_back(CGrPoint(ux, uy, 0));
    }

   
    m_cameraf = tsai.F();
    m_cameracx = tsai.Cx();
    m_cameracy = tsai.Cy();
    m_camerakappa1 = tsai.Kappa1();
    m_camerasx = tsai.Sx();
    memcpy(m_cameramatrix, tsai.CameraMatrix(), sizeof(double) * 16);

    return true;
}




문제점#1.

class CTsai 안의 member functions 중에  ncc_compute_exact_f_and_Tz( )와 ncc_compute_exact_f_and_Tz_error( )가 있는데,

libtsai.h:21
class CTsai
{

    bool ncc_compute_exact_f_and_Tz();
    bool ncc_compute_exact_f_and_Tz_error (int m_ptr, int n_ptr, const double *params, double *err);

};

전자인 ncc_compute_exact_f_and_Tz()가 정의된 부분을 보면, 

Tsai_ncc.cpp:274
bool CTsai::ncc_compute_exact_f_and_Tz()
{
    CLmdif<CTsai> lmdif;

    lmdif.Lmdif (this, ncc_compute_exact_f_and_Tz_error,
            m_point_count, NPARAMS, x,
            NULL, NULL, NULL, NULL);
}

클래스 형태의 템플릿( CLmdif )으로 선언된 "lmdif"의 member function "Lmdif"를 호출할 때, 

min/Lmdif.h:48
template<class T> class CLmdif : private CLmdif_
{

int Lmdif(T *p_user, bool (T::*p_func)(int m, int n, const double *parms, double *err),
        int m, int n, double *x, double *fvec, double *diag, int *ipvt, double *qtf)

};

후자인 같은 member function, ncc_compute_exact_f_and_Tz_error()를 인자로 넣고 있고 (위 부분 코드들 중 오렌지 색 부분), 컴파일 하면 이 부분을 <unknown type>으로 인식하지 못 하겠다는 에러 메시지를 보낸다. 그리고 다음과 같은 형태를 추천한다고 한다.
 
note: candidates are: int CLmdif<T>::Lmdif(T*, bool (T::*)(int, int, const double*, double*), int, int, double*, double*, double*, int*, double*) [with T = CTsai]

function pointer의 형태가 틀린 모양인데, 오렌지색 부분을 그냥 함수가 아닌 어떤 class의 non-static member function을 가리키는 pointer로  &CTsai::ncc_compute_exact_f_and_Tz_error 이렇게 바꾸어 주면, 에러 메시지가 다음과 같이 바뀐다.

error: no matching function for call to 'CLmdif<CTsai>::Lmdif(CTsai* const, bool (*)(int, int, const double*, double*), int&, const int&, double [3], NULL, NULL, NULL, NULL)'

연두색 부분 대신 CTsai::ncc_compute_exact_f_and_Tz_error 이렇게 바꾸어 주면, 에러 메시지가 다음과 같다.

error: no matching function for call to 'CLmdif<CTsai>::Lmdif(CTsai* const, bool (&)(int, int, const double*, double*), int&, const int&, double [3], NULL, NULL, NULL, NULL)'

해결:
편법으로, class CLmdif를 클래스 형 템플릿이 아닌 그냥 클래스로 바꾸어서 선언하고 연두색 부분처럼 호출하면 에러는 안 나기에 일단 이렇게 넘어가기로 한다.


문제점#2.
코드에서 Windows OS 기반 MFC를 사용하고 있어 Mac OS X에서 에러가 난다.

해결:
MFC를 사용하는 "StdAfx.h"는 모두 주석 처리한다.


문제점#3.
Lmdif.h



... 기타 등등의 문제점들을 해결하고, 캘리브레이션을 수행한 결과가 맞는지 확인하자.

source code:
           if ( CRimage.size() > 0 ) // if there is a valid point with its cross ratio
            {  
                correspondPoints(indexI, indexW, p, CRimage, linesYorder.size(), linesXorder.size(), world, CRworld, dxList.size(), dyList.size(), iplMatch, scale );
            }  
            cvShowImage( "match", iplMatch );
            cvSaveImage( "match.bmp", iplMatch );
           
            cout << "# of pairs = " << indexI.size() << " = " << indexW.size() << endl;
           
            // # 6. camera calibration
           
            int numPair = indexI.size();
           
            tsai.Clear();
           
            for( int n = 0;  n < numPair;  n++ )
            {
                tsai.Point(world[indexW[n]].x, world[indexW[n]].y, world[indexW[n]].z, p[indexI[n]].x, p[indexI[n]].y);
               
                cout << "pair #" << n << ": " << p[indexI[n]].x << "  " <<  p[indexI[n]].y << "  : "
                    << world[indexW[n]].x << "  " << world[indexW[n]].y << "  " << world[indexW[n]].z << endl;
            }
           
            if( numPair < 8 )
                cout << "Didn't get enough points" << endl;
           
            if(!tsai.Compute())
                cout << "Camera calibration failed" << endl;
           
            cout << endl << "camera parameter" << endl
            << "focus = " << tsai.F() << endl
            << "principal axis (x,y) = " <<  tsai.Cx() << ", " <<  tsai.Cy() << endl
            << "kappa1 (lens distortion) = " <<  tsai.Kappa1() << endl
            << "skew_x = " << tsai.Sx() << endl;
          
            // reproject world points on to the image frame to check the result of computing camera parameters
            for(int n=0;  n<tsai.PointCount();  n++)
            {
                double ux, uy;
                tsai.WorldToImage (tsai.PointX(n), tsai.PointY(n), tsai.PointZ(n), ux, uy);
                CvPoint reproj = cvPoint( cvRound(ux), cvRound(uy) );
                cvCircle( iplInput, reproj, 3, CV_RGB(200,100,200), 2 );
            }
           
// draw a cube on the image coordinate computed by camera parameters according to the world coordinate
            drawcube( tsai, iplInput, patSize );
            cvShowImage( "input", iplInput );  



아래 사진은 구해진 카메라 내부/외부 파라미터들을 가지고 (1) 실제 패턴의 점에 대응하는 이미지 프레임 (image coordinate) 상의 점을 찾아 (reprojection) 보라색 원으로 그리고, (2) 실제 패턴이 있는 좌표 (world coordinate)를 기준으로 한 graphic coordinate에 직육면체 cube를 노란색 선으로 그린 결과이다.

이미지 프레임과 실제 패턴 상의 점을 1 대 1로 비교하여 연결한 16쌍의 대응점

구한 카메라 파라미터를 가지고 실제 패턴 위의 점들을 이미지 프레임에 reproject한 결과 (보라색 점)와 실제 패턴의 좌표를 기준으로 한 그래픽이 이미지 프레임 상에 어떻게 나타나는지 그린 결과 (노란색 상자)

 

위 왼쪽 사진에서 보여지는 16쌍의 대응점들의 좌표값을 "이미지 좌표(x,y) : 패턴 좌표 (x,y,z)"로 출력한 결과:
# of pairs = 16 = 16
pair #0: 7.81919  36.7864  : 119.45  82.8966  0
pair #1: 15.1452  71.2526  : 119.45  108.484  0
pair #2: 26.1296  122.93  : 119.45  147.129  0
pair #3: 36.6362  172.36  : 119.45  182.066  0
pair #4: 77.3832  20.4703  : 159.45  82.8966  0
pair #5: 85.4293  53.7288  : 159.45  108.484  0
pair #6: 97.8451  105.05  : 159.45  147.129  0
pair #7: 109.473  153.115  : 159.45  182.066  0
pair #8: 96.6046  15.962  : 171.309  82.8966  0
pair #9: 105.046  48.8378  : 171.309  108.484  0
pair #10: 118.177  99.9803  : 171.309  147.129  0
pair #11: 130.4  147.586  : 171.309  182.066  0
pair #12: 145.469  4.50092  : 199.965  82.8966  0
pair #13: 154.186  36.5857  : 199.965  108.484  0
pair #14: 168.033  87.5497  : 199.965  147.129  0
pair #15: 180.732  134.288  : 199.965  182.066  0


그런데 위 오른쪽 사진에서 보여지는 결과는 이전 프레임에서 20쌍의 대응점으로부터 구한 카메라 파라미터 값을 가지고 계산한 결과이다.
# of found lines = 8 vertical, 7 horizontal
vertical lines:
horizontal lines:
p.size = 56
CRimage.size = 56

# of pairs = 20 = 20
pair #0: -42.2331  53.2782  : 102.07  108.484  0
pair #1: -22.6307  104.882  : 102.07  147.129  0
pair #2: -4.14939  153.534  : 102.07  182.066  0
pair #3: 1.81771  169.243  : 102.07  193.937  0
pair #4: -10.9062  41.1273  : 119.45  108.484  0
pair #5: 8.69616  92.7309  : 119.45  147.129  0
pair #6: 27.0108  140.945  : 119.45  182.066  0
pair #7: 32.9779  156.653  : 119.45  193.937  0
pair #8: 57.4164  14.6267  : 159.45  108.484  0
pair #9: 77.7374  65.9516  : 159.45  147.129  0
pair #10: 96.3391  112.934  : 159.45  182.066  0
pair #11: 102.524  128.555  : 159.45  193.937  0
pair #12: 76.5236  7.21549  : 171.309  108.484  0
pair #13: 97.5633  58.2616  : 171.309  147.129  0
pair #14: 116.706  104.705  : 171.309  182.066  0
pair #15: 123.108  120.238  : 171.309  193.937  0
pair #16: 125.015  -11.5931  : 199.965  108.484  0
pair #17: 146.055  39.453  : 199.965  147.129  0
pair #18: 164.921  85.2254  : 199.965  182.066  0
pair #19: 171.323  100.758  : 199.965  193.937  0

camera parameter
focus = 3724.66
principal axis (x,y) = 168.216, 66.5731
kappa1 (lens distortion) = -6.19473e-07
skew_x = 1



대응점 연결에 오차가 없으면, 즉, 패턴 인식이 잘 되면, Tsai 알고리즘에 의한 카메라 파라미터 구하기가 제대로 되고 있음을 확인할 수 있다. 하지만, 현재 full optimization (모든 파라미터들에 대해 최적화 과정을 수행하는 것)으로 동작하게 되어 있고, 프레임마다 모든 파라미터들을 새로 구하고 있기 때문에, 속도가 매우 느리다. 시험 삼아 reprojection과 간단한 graphic을 그리는 과정은 속도에 큰 영향이 없지만, 그전에 카메라 캘리브레이션을 하는 데 필요한 계산 시간이 길다. 입력 프레임이 들어오는 시간보다 훨씬 많은 시간이 걸려 실시간 구현이 되지 못 하고 있다.

따라서, (1) 내부 파라미터는 첫 프레임에서 한 번만 계산하고 (2) 이후 매 프레임마다 외부 파라미터 (카메라의 회전과 이동)만을 따로 계산하는 것으로 코드를 수정해야 한다.




Try#3.
OpenCV 함수 이용

1) 내부 파라미터 계산
cvCalib
rateCamera2


2) lens distortion(kappa1, kappa2)을 가지고 rectification
cvInitUndistortRectifyMap

3) line detection

4) 패턴 인식 (대응점 찾기)

5) 외부 파라미터 계산 (4의 결과 & lens distortion = 0 입력)
cvFindExtrinsicCameraParams2

6) reprojection
2)에서 얻은 rectificated image에 할 것