블로그 이미지
Leeway is... the freedom that someone has to take the action they want to or to change their plans.
maetel

Notice

Recent Post

Recent Comment

Recent Trackback

Archive

calendar

1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31
  • total
  • today
  • yesterday

Category

'chessboard'에 해당되는 글 2건

  1. 2010.09.15 2010ETRIcg: report 0916
  2. 2010.09.07 OpenCV: chessboard corners detection Test 1
2010. 9. 15. 21:33

보호되어 있는 글입니다.
내용을 보시려면 비밀번호를 입력하세요.

2010. 9. 7. 17:29 Computer Vision
OpenCV 함수 cvFindChessboardCorners()와 cvDrawChessboardCorners() 사용


bool findChessboardCorners(const Mat& image, Size patternSize, vector<Point2f>& corners, int flags=CV_CALIB_CB_ADAPTIVE_THRESH+ CV_CALIB_CB_NORMALIZE_IMAGE)

Finds the positions of the internal corners of the chessboard.

Parameters:
  • image – Source chessboard view; it must be an 8-bit grayscale or color image
  • patternSize – The number of inner corners per chessboard row and column ( patternSize = cvSize(points _ per _ row,points _ per _ colum) = cvSize(columns,rows) )
  • corners – The output array of corners detected
  • flags

    Various operation flags, can be 0 or a combination of the following values:

    • CV_CALIB_CB_ADAPTIVE_THRESH use adaptive thresholding to convert the image to black and white, rather than a fixed threshold level (computed from the average image brightness).
    • CV_CALIB_CB_NORMALIZE_IMAGE normalize the image gamma with EqualizeHist before applying fixed or adaptive thresholding.
    • CV_CALIB_CB_FILTER_QUADS use additional criteria (like contour area, perimeter, square-like shape) to filter out false quads that are extracted at the contour retrieval stage.



file:///Users/lym/opencv/src/cv/cvcalibinit.cpp
https://code.ros.org/trac/opencv/browser/tags/2.1/opencv/src/cv/cvcalibinit.cpp



void drawChessboardCorners(Mat& image, Size patternSize, const Mat& corners, bool patternWasFound)

Renders the detected chessboard corners.

Parameters:
  • image – The destination image; it must be an 8-bit color image
  • patternSize – The number of inner corners per chessboard row and column. (patternSize = cvSize(points _ per _ row,points _ per _ colum) = cvSize(columns,rows) )
  • corners – The array of corners detected
  • patternWasFound – Indicates whether the complete board was found or not . One may just pass the return value FindChessboardCorners her



Learning OpenCV: Chapter 11. Camera Models and Calibration: Chessboards
381p


chessboard.bmp

640x480





console:
finding chessboard corners...
what = 1
chessboard corners: 215.5, 179
#0=(215.5, 179)    #1=(237.5, 178.5)    #2=(260.5, 178)    #3=(283.5, 177.5)    #4=(307, 177)    #5=(331.5, 175.5)    #6=(355.5, 174.5)    #7=(380.5, 174)    #8=(405.5, 173.5)    #9=(430.5, 172.5)    #10=(212.5, 201.5)    #11=(235.5, 201.5)    #12=(258, 200.5)    #13=(280.5, 200.5)    #14=(305.5, 199.5)    #15=(330, 198.5)    #16=(354.5, 198)    #17=(379.5, 197.5)    #18=(405.5, 196.5)    #19=(430.5, 196)    #20=(210, 224.5)    #21=(232.5, 224.5)    #22=(256, 223.5)    #23=(280, 224)    #24=(304, 223)    #25=(328.5, 222.5)    #26=(353.5, 222)    #27=(378.5, 221.5)    #28=(404.5, 221.5)    #29=(430.5, 220.5)    #30=(207, 247.5)    #31=(230.5, 247.5)    #32=(253.5, 247.5)    #33=(277.5, 247)    #34=(303, 247)    #35=(327, 246.5)    #36=(352, 246.5)    #37=(377.5, 246)    #38=(403.5, 245.5)    #39=(430, 245.5)    #40=(204.5, 271.5)    #41=(227.5, 271.5)    #42=(251.5, 271.5)    #43=(275.5, 271.5)    #44=(300, 272)    #45=(325.5, 271.5)    #46=(351, 271)    #47=(376.5, 271.5)    #48=(403, 271.5)    #49=(429.5, 271)    #50=(201.5, 295.5)    #51=(225.5, 295.5)    #52=(249.5, 296)    #53=(273.5, 296.5)    #54=(299, 297)    #55=(324, 296)    #56=(349.5, 296.5)    #57=(375.5, 296.5)    #58=(402.5, 296.5)    #59=(429, 297)   

finished









finding chessboard corners...
what = 0
chessboard corners: 0, 0
#0=(0, 0)    #1=(0, 0)    #2=(0, 0)    #3=(0, 0)    #4=(0, 0)    #5=(0, 0)    #6=(0, 0)    #7=(0, 0)    #8=(0, 0)    #9=(0, 0)    #10=(0, 0)    #11=(0, 0)    #12=(0, 0)    #13=(0, 0)    #14=(0, 0)    #15=(0, 0)    #16=(0, 0)    #17=(0, 0)    #18=(0, 0)    #19=(0, 0)    #20=(0, 0)    #21=(0, 0)    #22=(0, 0)    #23=(0, 0)    #24=(0, -2.22837e-29)    #25=(-2.22809e-29, -1.99967)    #26=(4.2039e-45, -2.22837e-29)    #27=(-2.22809e-29, -1.99968)    #28=(4.2039e-45, 1.17709e-43)    #29=(6.72623e-44, 1.80347e-42)    #30=(0, 0)    #31=(4.2039e-45, 1.45034e-42)    #32=(-2.2373e-29, -1.99967)    #33=(4.2039e-45, 2.52094e-42)    #34=(-2.2373e-29, -1.99969)    #35=(-2.22634e-29, -1.99968)    #36=(4.2039e-45, 1.17709e-43)    #37=(6.72623e-44, 1.80347e-42)    #38=(0, 0)    #39=(0, 1.80347e-42)    #40=(3.36312e-44, 5.46787e-42)    #41=(6.45718e-42, 5.04467e-44)    #42=(0, 1.80347e-42)    #43=(6.48101e-42, 5.48188e-42)    #44=(0, 1.4013e-45)    #45=(4.2039e-45, 0)    #46=(1.12104e-44, -2.22837e-29)    #47=(-2.22809e-29, -1.99969)    #48=(4.2039e-45, 6.72623e-44)    #49=(6.16571e-44, 1.80347e-42)    #50=(0, 0)    #51=(1.4013e-45, -2.27113e-29)    #52=(4.56823e-42, -1.99969)    #53=(4.2039e-45, -2.20899e-29)    #54=(-2.2373e-29, -1.9997)    #55=(-2.22619e-29, -1.99969)    #56=(4.2039e-45, 6.72623e-44)    #57=(-1.9997, 1.80347e-42)    #58=(0, -2.22957e-29)    #59=(-2.23655e-29, -2.20881e-29)   

finished










finding chessboard corners...
what = 0
chessboard corners: 0, 0
#0=(0, 0)    #1=(0, 0)    #2=(0, 0)    #3=(0, 0)    #4=(0, 0)    #5=(0, 0)    #6=(0, 0)    #7=(0, 0)    #8=(0, 0)    #9=(0, 0)    #10=(0, 0)    #11=(0, 0)    #12=(0, 0)    #13=(0, 0)    #14=(0, 0)    #15=(0, 0)    #16=(0, 0)    #17=(0, 0)    #18=(0, 0)    #19=(0, 0)    #20=(0, 0)    #21=(0, 0)    #22=(0, 0)    #23=(0, 0)    #24=(0, -2.22837e-29)    #25=(-2.22809e-29, -1.99967)    #26=(4.2039e-45, -2.22837e-29)    #27=(-2.22809e-29, -1.99968)    #28=(4.2039e-45, 1.17709e-43)    #29=(6.72623e-44, 1.80347e-42)    #30=(0, 0)    #31=(4.2039e-45, 1.45034e-42)    #32=(-2.2373e-29, -1.99967)    #33=(4.2039e-45, 2.52094e-42)    #34=(-2.2373e-29, -1.99969)    #35=(-2.22634e-29, -1.99968)    #36=(4.2039e-45, 1.17709e-43)    #37=(6.72623e-44, 1.80347e-42)    #38=(0, 0)    #39=(0, 1.80347e-42)    #40=(3.36312e-44, 5.46787e-42)    #41=(6.45718e-42, 5.04467e-44)    #42=(0, 1.80347e-42)    #43=(6.48101e-42, 5.48188e-42)    #44=(0, 1.4013e-45)    #45=(4.2039e-45, 0)    #46=(1.12104e-44, -2.22837e-29)    #47=(-2.22809e-29, -1.99969)    #48=(4.2039e-45, 6.72623e-44)    #49=(6.16571e-44, 1.80347e-42)    #50=(0, 0)    #51=(1.4013e-45, -2.27113e-29)    #52=(4.56823e-42, -1.99969)    #53=(4.2039e-45, -2.20899e-29)    #54=(-2.2373e-29, -1.9997)    #55=(-2.22619e-29, -1.99969)    #56=(4.2039e-45, 6.72623e-44)    #57=(-1.9997, 1.80347e-42)    #58=(0, -2.22957e-29)    #59=(-2.23655e-29, -2.20881e-29)   

finished







source code:
// Test: chessboard detection

#include <OpenCV/OpenCV.h> // frameworks on mac
//#include <cv.h>
//#include <highgui.h>

#include <iostream>
using namespace std;


int main()
{

    IplImage* image = cvLoadImage( "DSCN3310.jpg", 1 );
   
/*    IplImage* image = 0;
    // initialize capture from a camera
    CvCapture* capture = cvCaptureFromCAM(0); // capture from video device #0
    cvNamedWindow("camera");
                
    while(1) {
        if ( !cvGrabFrame(capture) ){
            printf("Could not grab a frame\n\7");
            exit(0);
        }
        else {
            cvGrabFrame( capture ); // capture a frame
            image = cvRetrieveFrame(capture); // retrieve the captured frame
*/           
//            cvShowImage( "camera", image );
            cvNamedWindow( "camera" );  cvShowImage( "camera", image );
   
            cout << endl << "finding chessboard corners..." << endl;
            CvPoint2D32f corners[60];
            int numCorners[60];
            //cvFindChessboardCorners(<#const void * image#>, <#CvSize pattern_size#>, <#CvPoint2D32f * corners#>, <#int * corner_count#>, <#int flags#>)
            int what = cvFindChessboardCorners( image, cvSize(10,6), corners, numCorners, CV_CALIB_CB_ADAPTIVE_THRESH );
            cout << "what = " << what << endl;
            cout << "chessboard corners: " << corners[0].x << ", " << corners[0].y << endl;            
       
    for( int n = 0; n < 60; n++ )
    {
        cout << "#" << n << "=(" << corners[n].x << ", " << corners[n].y << ")\t";
    }
    cout << endl;
       
            // cvDrawChessboardCorners(<#CvArr * image#>, <#CvSize pattern_size#>, <#CvPoint2D32f * corners#>, <#int count#>, <#int pattern_was_found#>)
    cvDrawChessboardCorners( image, cvSize(10,6), corners, 60, what );   
   
   
    cvNamedWindow( "chessboard" ); cvMoveWindow( "chessboard", 200, 200 ); cvShowImage( "chessboard", image );
    cvSaveImage( "chessboard.bmp", image );       
            cvWaitKey(0);
//        }
//    }
   
    cout << endl << "finished" << endl;
//   cvReleaseCapture( &capture ); // release the capture source
    cvDestroyAllWindows();
   
    return 0;
}





posted by maetel