'Computer Vision/2010ETRI-MultiAutoCalib'에 해당되는 글 13건
- 2010.09.16 2010ETRIcg: report 0915
- 2010.09.15 2010ETRIcg: report 0916
- 2010.09.14 2010ETRIcg: report 0914
- 2010.09.06 2010ETRIcg: report 0906
- 2010.09.04 2010ETRIcg: report 0904
- 2010.09.03 Masakazu Suzuki "Evapotranspiration Estimates of Forested Watersheds in Japan Using the Short-time Period Water-budget Methods"
- 2010.09.03 OpenCV: cvFindContours( )
- 2010.07.20 Ferenc Kahlesz & Cornelius Lilge & Reinhard Klein "Easy–to–Use Calibration of Multiple–Camera Setups"
- 2010.07.20 case study: 리프로젝션 에러 실험 결과 조사
- 2010.07.16 J. Weng, P. Cohen, and M. Herniou "Camera calibration with distortion models and accuracy evaluation"
- 2010.07.16 DLR Camera Calibration Toolbox
- 2010.07.07 Test: reprojection error (Quickcam Pro4000)
- 2010.07.07 Tomas Svoboda <Multi-Camera Self-Calibration>
短期水収支法による森林流域からの蒸発散量推定
Evapotranspiration estimates of forested watersheds in Japan using the short-time period water-budget method [in Japanese]
鈴木 雅一 (SUZUKI Masakazu)
京都大学農学部 (Fac.of Agr., Kyoto Univ.)
長期間にわたって水収支観測がなされている日本各地の森 林流域の記録をもとに, 短期水収支法を用いて流域の蒸発散量とその季節変化を求めた。検討には桐生, 川向, 竜の口山, 釜淵, 去川の5試験地, 9流域のそれぞれ10年から40年間の日雨量, 日流出量記録が用いられた。短期水収支法では, 渇水による蒸発散低下は水収支期間内の最小流量に対応して生じ, 蒸発散低下をもたらす限界流量が流域ごとに定められた。渇水による蒸発低下の例を除外して求めた蒸発散量季節変化は, 植生が著しく変わらないとき集計期間が異なってもほぼ同様の結果となった。森林の伐採や山火事によって蒸発散量が減少する傾向は各流域とも同様であるが, その変化が通年にわたり生じた流域とおもに夏期に生じた流域があった。求められた蒸発散量とその季節変化は各流域の気象, 植生を反映する値として, 森林流域の蒸発散量推定式作成の基礎資料になるといえる。
The annual and monthly evapotranspiration were estimated using the method of the short-time period water-budget on 9 water-sheds located in 5 experimental areas in Japan. Daily precipitation and discharge records and a period of 10 to 40 years for each watershed were used in this estimation. The appearance of an evapotranspiration decline because of drought has a relationship with the minimum discharge-rate in a water-budget period. The critical discharge-rate for an evapotranspiration decline can be determined for each watershed. On a watershed without a remarkable change of vegetation, seasonal variations of different averaging periods of years for evapotranspiration under no drought conditions change in the same way. Evapotranspiration decreases after clear-cuttings and forest fires on every watershed where such events have occurred, but the tendency for changes in seasonal variations vary with each watershed.
'Computer Vision > 2010ETRI-MultiAutoCalib' 카테고리의 다른 글
2010ETRIcg: report 0906 (0) | 2010.09.06 |
---|---|
2010ETRIcg: report 0904 (0) | 2010.09.04 |
OpenCV: cvFindContours( ) (0) | 2010.09.03 |
Ferenc Kahlesz & Cornelius Lilge & Reinhard Klein "Easy–to–Use Calibration of Multiple–Camera Setups" (0) | 2010.07.20 |
case study: 리프로젝션 에러 실험 결과 조사 (0) | 2010.07.20 |
cvFindContours()
Finds the contours in a binary image.
Parameters: |
|
---|
Learning OpenCV: Chater 8. Contours: Contour Finding
: 234p
"the concept of a contour tree"
Suzuki, M. (1985) Evapotranspiration Estimates of Forested Watersheds in Japan Using the Short-time Period Water-budget Methods. Journal of Japanese Forest Society, 67: 115-125. (in Japanese with English summary)
'Computer Vision > 2010ETRI-MultiAutoCalib' 카테고리의 다른 글
Ferenc Kahlesz, Cornelius Lilge & Reinhard Klein
University of Bonn, Institute of Computer Science II, Computer Graphics Group
http://biecoll.ub.uni-bielefeld.de
Proceedings of the ICVS(International Conference on Computer Vision Systems) Workshop on Camera Calibration Methods for Computer Vision Systems - CCMVS2007 Published in 2007 by Applied Computer Science Group, Bielefeld University, Germany
'Computer Vision > 2010ETRI-MultiAutoCalib' 카테고리의 다른 글
Masakazu Suzuki "Evapotranspiration Estimates of Forested Watersheds in Japan Using the Short-time Period Water-budget Methods" (0) | 2010.09.03 |
---|---|
OpenCV: cvFindContours( ) (0) | 2010.09.03 |
case study: 리프로젝션 에러 실험 결과 조사 (0) | 2010.07.20 |
J. Weng, P. Cohen, and M. Herniou "Camera calibration with distortion models and accuracy evaluation" (0) | 2010.07.16 |
DLR Camera Calibration Toolbox (0) | 2010.07.16 |
In the case of experiments in a laboratory:
(1) Yasutaka Furukawa & Jean Ponce, "Accurate Camera Calibration from Multi-View Stereo and Bundle Adjustment", CVPR 2008
(* 영상의 크기와 리프로젝션 에러 사이의 관계를 수학적으로 설명)
For example, the robot arm (Stanford spherical gantry) used in the multi-view stereo evaluation of [18] has an accuracy of 0.01◦ for a 1m radius sphere observing an object about 15cm in diameter, which yields approximately 1.0[m]×0.01×π/180 = 0.175[mm] errors near an object. Even with the low-resolution 640×480 cameras used in [18], where a pixel covers roughly 0.25mm on the surface of an object, this error corresponds to 0.175/0.25 = 0.7pixels, which is not negligible. If one used a highresolution 4000× 3000 camera, the positioning error would increase to 0.7×4000/640 = 4.4pixels.
The mean reprojection error decreases from 2-3pixels before refinement to about 0.25 to 0.5 pixels for most datasets after six iterations.
In practice, we have found PMVS to be robust to errors in camera parameters as long as the image resolution matches the corresponding reprojection errors—that is, when features to be matched are roughly within two pixels of the corresponding 3D points.
(2) Ivo Ihrke & Lukas Ahrenberg & Marcus Magnor, “External camera calibration for synchronized multi-video systems”, Journal of WSCG(the 12th International Conference in Central Europe on Computer Graphics, Visualization and Computer Vision), 2004
(3) Cheng-I Chen & Yong-Sheng Chen "Central Catadioptric Camera Calibration using Planar Objects", ICVS 2007
(4) Seitz, S. M., Curless, B., Diebel, J., Scharstein, D., and Szeliski, R. 2006. A Comparison and Evaluation of Multi-View Stereo Reconstruction Algorithms, CVPR 2006
: S. Seitz et al. Multi-view stereo evaluation web page at http://vision.middlebury.edu/mview/
Calibration accuracy on these datasets appears to be on the order of a pixel (a pixel spans about 1/4mm on the object). It is difficult to quantify the calibration accuracy because we don't have point correspondences in all views. However, when the images are reprojected onto the laser scanned mesh reconstruction and averaged, 1-2 pixel wide features are clearly visible. Some images and regions of the object are a bit out of focus, due in part to the limited depth of field afforded by the imaging configuration. This is probably a blessing in disguise, as it helps compensate for the lack of sub-pixel registration. While there is certainly room for improvement, we expect that this degree of accuracy will enable good results for most algorithms. Note that the images have been corrected to remove radial distortion.
2. 일반/극한 환경 (실내/실외)에서의 결과
In the case of experiments in an exterior, interior or extreme circumstance:
3. 리프로젝션 에러 최소화 관련 방법과 용어 및 문헌
methods or related terms to be used to minimize reprojection errors
(1) sampson error
(2) LM(Levenberg-marquardt) algorithm
M. Lourakis. levmar: Levenberg-marquardt nonlinear least squares algorithms in C/C++. [web page] http://www.ics.forth.gr/~lourakis/levmar, July 2004.
(3) bundle adjustment
(4) iterative gradient descent (in Bouget's toolbox)
ref.
1) Gregorij Kurillo & Zeyu Li & Ruzena Bajcsy, "Framework for Hierarchical Calibration of Multi-camera Systems for Teleimmersion", ICIT 2009
Figure 1 shows typical error distribution as obtained on the four cameras within the cluster. After the global optimization on all four cameras, the combined error distribution resembles Gaussian distribution with the mean value of 0.153 pixels and standard deviation of 0.091 pixels. Note that the reprojection error on the color camera (#4) is higher than on the grayscale cameras. The maximal error for this set of images was 0.8 though only a small number of points had errors in that range.
Bundle adjustment minimizes the following reprojection error:
Figure 4 shows the reprojection error on all cameras. The cameras whose position and orientation were obtained by indirect transformation path with the reference camera had no significantly different reprojection errors as compared to the cameras calibrated directly with the reference camera. The mean reprojection error between all the cameras was 0.3633 pixels with the standard deviation of 0.0486 pixels.
2) Kai Ide & Steffen Siering & Thomas Sikora, "Automating Multi-Camera Self-Calibration", WACV 2009
In practice the reprojection error is usually larger at image boundaries as radial distortions due to the optical system used in the cameras become more apparent. Somewhat surprisingly this is also true for the optics of the projector even though its high quality object lens should show no signs of radial distortion when projecting rectangular images onto a screen.
The reprojection error for our setup consisting of four cameras and one projector is shown shown in fig. 9. The total mean reprojection error is 0.29 pixels with a standard deviation of 0.20 pixels. It is important to mention that this result, despite being satisfactory, is not necessarily in itself meaningful as one has to compare this value with the distribution of points within the image space that have survived the RANSAC verification. An even spread throughout the image plane is desirable, a property that has been demonstrated in fig. 8. As we decrease radius and spacing to r = s = 1 we get results similar to the unmodified calibration sequence, yielding a relatively large reprojection error of 0.8 pixels in average.
'Computer Vision > 2010ETRI-MultiAutoCalib' 카테고리의 다른 글
OpenCV: cvFindContours( ) (0) | 2010.09.03 |
---|---|
Ferenc Kahlesz & Cornelius Lilge & Reinhard Klein "Easy–to–Use Calibration of Multiple–Camera Setups" (0) | 2010.07.20 |
J. Weng, P. Cohen, and M. Herniou "Camera calibration with distortion models and accuracy evaluation" (0) | 2010.07.16 |
DLR Camera Calibration Toolbox (0) | 2010.07.16 |
Test: reprojection error (Quickcam Pro4000) (0) | 2010.07.07 |
'Computer Vision > 2010ETRI-MultiAutoCalib' 카테고리의 다른 글
Ferenc Kahlesz & Cornelius Lilge & Reinhard Klein "Easy–to–Use Calibration of Multiple–Camera Setups" (0) | 2010.07.20 |
---|---|
case study: 리프로젝션 에러 실험 결과 조사 (0) | 2010.07.20 |
DLR Camera Calibration Toolbox (0) | 2010.07.16 |
Test: reprojection error (Quickcam Pro4000) (0) | 2010.07.07 |
Tomas Svoboda <Multi-Camera Self-Calibration> (0) | 2010.07.07 |
http://www.dlr.de/rm/desktopdefault.aspx/tabid-3925/
Institute of Robotics and Mechatronics, German Aerospace Center (DLR)
> 특징
스테레오 (두 대 이상의 카메라)
자동 캘리브레이션(카메라 렌즈 왜곡, 내부/외부 파라미터)
Hand-Eye Calibration
수동 조작 가능
[1] K. H. Strobl and G. Hirzinger. "Optimal Hand-Eye Calibration." In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2006), Beijing, China, pp. 4647-4653, October 2006.
[2] J. Weng, P. Cohen, and M. Herniou. "Camera calibration with distortion models and accuracy evaluation." In IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 14(10): 965-980, 1992.
[3] K. H. Strobl and G. Hirzinger. "More Accurate Camera and Hand-Eye Calibrations with Unknown Grid Pattern Dimensions." In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA 2008), Pasadena, California, USA, May 2008, in press.
'Computer Vision > 2010ETRI-MultiAutoCalib' 카테고리의 다른 글
# of found lines = 10 vertical, 8 horizontal
vertical lines:
horizontal lines:
p.size = 80
corner
35.6611, -6.40545 33.0973, 24.1258 32.2603, 34.0929 29.1089, 71.6216 26.9599, 97.2142 24.1377, 130.823 21.5627, 161.487 18.0768, 203 86.259, -2.68977 84.6836, 27.3713 84.1602, 37.3582 82.2186, 74.405 80.9047, 99.4752 79.1713, 132.552 77.5933, 162.661 75.4792, 203 108.14, -1.08291 106.889, 28.7684 106.47, 38.7618 104.926, 75.595 103.885, 100.438 102.508, 133.286 101.257, 163.156 99.5866, 203 155.983, 2.43046 155.675, 31.8377 155.57, 41.8509 155.189, 78.2292 154.934, 102.578 154.596, 134.923 154.288, 164.267 153.883, 203 168.044, 3.31615 168.351, 32.6352 168.456, 42.6616 168.836, 78.9444 169.09, 103.171 169.427, 135.389 169.733, 164.591 170.135, 203 202.166, 5.82193 202.773, 34.8009 202.983, 44.8339 203.736, 80.7734 204.236, 104.644 204.904, 136.504 205.508, 165.34 206.297, 203 216.478, 6.8729 217.688, 35.7392 218.109, 45.7855 219.61, 81.6053 220.604, 105.33 221.933, 137.039 223.135, 165.709 224.698, 203 246.815, 9.1007 248.312, 37.6659 248.838, 47.7188 250.7, 83.2347 251.927, 106.643 253.572, 138.033 255.057, 166.378 256.976, 203 274.553, 11.1377 276.632, 39.4477 277.371, 49.514 279.96, 84.7681 281.658, 107.889 283.942, 138.987 286.001, 167.026 288.643, 203 312.163, 13.8996 315.103, 41.8681 316.163, 51.9545 319.831, 86.8577 322.22, 109.589 325.447, 140.292 328.35, 167.913 332.038, 203
please
CRimage.size = 80
index matching: image# 0, 0 to world# 3, 5
index matching: image# 0, 1 to world# 3, 6
index matching: image# 0, 2 to world# 3, 7
index matching: image# 0, 3 to world# 3, 8
index matching: image# 0, 4 to world# 3, 9
index matching: image# 0, 5 to world# 3, 10
index matching: image# 1, 0 to world# 4, 5
index matching: image# 1, 1 to world# 4, 6
index matching: image# 1, 2 to world# 4, 7
index matching: image# 1, 3 to world# 4, 8
index matching: image# 1, 4 to world# 4, 9
index matching: image# 1, 5 to world# 4, 10
index matching: image# 2, 0 to world# 5, 5
index matching: image# 2, 1 to world# 5, 6
index matching: image# 2, 2 to world# 5, 7
index matching: image# 2, 3 to world# 5, 8
index matching: image# 2, 4 to world# 5, 9
index matching: image# 2, 5 to world# 5, 10
index matching: image# 3, 0 to world# 6, 5
index matching: image# 3, 1 to world# 6, 6
index matching: image# 3, 2 to world# 6, 7
index matching: image# 3, 3 to world# 6, 8
index matching: image# 3, 4 to world# 6, 9
index matching: image# 3, 5 to world# 6, 10
index matching: image# 4, 0 to world# 7, 5
index matching: image# 4, 1 to world# 7, 6
index matching: image# 4, 2 to world# 7, 7
index matching: image# 4, 3 to world# 7, 8
index matching: image# 4, 4 to world# 7, 9
index matching: image# 4, 5 to world# 7, 10
index matching: image# 5, 0 to world# 8, 5
index matching: image# 5, 1 to world# 8, 6
index matching: image# 5, 2 to world# 8, 7
index matching: image# 5, 3 to world# 8, 8
index matching: image# 5, 4 to world# 8, 9
index matching: image# 5, 5 to world# 8, 10
index matching: image# 6, 0 to world# 9, 5
index matching: image# 6, 1 to world# 9, 6
index matching: image# 6, 2 to world# 9, 7
index matching: image# 6, 3 to world# 9, 8
index matching: image# 6, 4 to world# 9, 9
index matching: image# 6, 5 to world# 9, 10
index matching: image# 7, 0 to world# 10, 5
index matching: image# 7, 1 to world# 10, 6
index matching: image# 7, 2 to world# 10, 7
index matching: image# 7, 3 to world# 10, 8
index matching: image# 7, 4 to world# 10, 9
index matching: image# 7, 5 to world# 10, 10
index matching: image# 8, 0 to world# 11, 5
index matching: image# 8, 1 to world# 11, 6
index matching: image# 8, 2 to world# 11, 7
index matching: image# 8, 3 to world# 11, 8
index matching: image# 8, 4 to world# 11, 9
index matching: image# 8, 5 to world# 11, 10
index matching: image# 9, 0 to world# 12, 5
index matching: image# 9, 1 to world# 12, 6
index matching: image# 9, 2 to world# 12, 7
index matching: image# 9, 3 to world# 12, 8
index matching: image# 9, 4 to world# 12, 9
index matching: image# 9, 5 to world# 12, 10
coordinate matching: image 35.5294, -6.40545 to world 62.07, 147.129, 0.0
coordinate matching: image 33.4637, 24.1207 to world 62.07, 182.066, 0.0
coordinate matching: image 32.4883, 34.7344 to world 62.07, 193.937, 0.0
coordinate matching: image 29.3473, 71.7697 to world 62.07, 233.937, 0.0
coordinate matching: image 27.0674, 97.0156 to world 62.07, 259.855, 0.0
coordinate matching: image 24.235, 130.495 to world 62.07, 293.265, 0.0
coordinate matching: image 86.259, -2.68977 to world 102.07, 147.129, 0.0
coordinate matching: image 84.5506, 27.4862 to world 102.07, 182.066, 0.0
coordinate matching: image 84.0488, 37.9824 to world 102.07, 193.937, 0.0
coordinate matching: image 82.2594, 74.6152 to world 102.07, 233.937, 0.0
coordinate matching: image 80.7738, 99.5121 to world 102.07, 259.855, 0.0
coordinate matching: image 79.3161, 132.494 to world 102.07, 293.265, 0.0
coordinate matching: image 108.14, -1.08291 to world 119.45, 147.129, 0.0
coordinate matching: image 106.447, 28.8103 to world 119.45, 182.066, 0.0
coordinate matching: image 105.952, 39.3494 to world 119.45, 193.937, 0.0
coordinate matching: image 104.521, 75.7666 to world 119.45, 233.937, 0.0
coordinate matching: image 103.606, 100.493 to world 119.45, 259.855, 0.0
coordinate matching: image 102.511, 133.31 to world 119.45, 293.265, 0.0
coordinate matching: image 155.327, 2.50148 to world 159.45, 147.129, 0.0
coordinate matching: image 155.143, 32.0653 to world 159.45, 182.066, 0.0
coordinate matching: image 154.91, 42.5242 to world 159.45, 193.937, 0.0
coordinate matching: image 154.682, 78.4145 to world 159.45, 233.937, 0.0
coordinate matching: image 154.596, 102.636 to world 159.45, 259.855, 0.0
coordinate matching: image 154.507, 134.865 to world 159.45, 293.265, 0.0
coordinate matching: image 169.293, 3.464 to world 171.309, 147.129, 0.0
coordinate matching: image 169.238, 33.0578 to world 171.309, 182.066, 0.0
coordinate matching: image 169.302, 43.3455 to world 171.309, 193.937, 0.0
coordinate matching: image 169.333, 79.1385 to world 171.309, 233.937, 0.0
coordinate matching: image 169.423, 103.342 to world 171.309, 259.855, 0.0
coordinate matching: image 169.546, 135.378 to world 171.309, 293.265, 0.0
coordinate matching: image 202.289, 5.97719 to world 199.965, 147.129, 0.0
coordinate matching: image 202.842, 35.3023 to world 199.965, 182.066, 0.0
coordinate matching: image 203.138, 45.4776 to world 199.965, 193.937, 0.0
coordinate matching: image 203.843, 80.9247 to world 199.965, 233.937, 0.0
coordinate matching: image 204.481, 104.772 to world 199.965, 259.855, 0.0
coordinate matching: image 205.419, 136.449 to world 199.965, 293.265, 0.0
coordinate matching: image 217.636, 7.27727 to world 213.626, 147.129, 0.0
coordinate matching: image 218.523, 36.3636 to world 213.626, 182.066, 0.0
coordinate matching: image 218.858, 46.4402 to world 213.626, 193.937, 0.0
coordinate matching: image 220.052, 81.6308 to world 213.626, 233.937, 0.0
coordinate matching: image 220.875, 105.426 to world 213.626, 259.855, 0.0
coordinate matching: image 222.084, 136.772 to world 213.626, 293.265, 0.0
coordinate matching: image 246.503, 9.52037 to world 239.562, 147.129, 0.0
coordinate matching: image 247.889, 38.3327 to world 239.562, 182.066, 0.0
coordinate matching: image 248.441, 48.3851 to world 239.562, 193.937, 0.0
coordinate matching: image 250.452, 82.8983 to world 239.562, 233.937, 0.0
coordinate matching: image 251.677, 106.428 to world 239.562, 259.855, 0.0
coordinate matching: image 253.478, 137.564 to world 239.562, 293.265, 0.0
coordinate matching: image 274.335, 11.6118 to world 265.097, 147.129, 0.0
coordinate matching: image 276.296, 40.1247 to world 265.097, 182.066, 0.0
coordinate matching: image 276.934, 50.0298 to world 265.097, 193.937, 0.0
coordinate matching: image 279.607, 84.2214 to world 265.097, 233.937, 0.0
coordinate matching: image 281.52, 107.359 to world 265.097, 259.855, 0.0
coordinate matching: image 283.694, 138.233 to world 265.097, 293.265, 0.0
coordinate matching: image 312.421, 14.5857 to world 300.95, 147.129, 0.0
coordinate matching: image 314.962, 42.5479 to world 300.95, 182.066, 0.0
coordinate matching: image 316.064, 52.2651 to world 300.95, 193.937, 0.0
coordinate matching: image 320.518, 85.6258 to world 300.95, 233.937, 0.0
coordinate matching: image 322.22, 109.589 to world 300.95, 259.855, 0.0
coordinate matching: image 325.447, 138.885 to world 300.95, 293.265, 0.0
camera matrix
fx=301.669 0 cx=149.066
0 fy=237.063 cy=167.683
0 0 1
lens distortion
k1 = 0.0280614
k2 = -0.0278541
p1 = -0.00314248
p2 = 0.00323144
rotation vector
-0.155056 -0.115457 0.0134497
translation vector
-152.854 -325.802 262.059
check reprojection?
reprojection errors
0.769114 0.25348 0.163043 0.217367 0.0561251 0.188387 0.106855 0.103549 0.00969562 0.162657 0.168114 0.0333034 0.609429 0.146523 0.0704871 0.181848 0.0884141 0.106862 0.0507463 0.14039 0.0975367 0.131104 0.0561415 0.086923 0.194587 0.0698258 0.116085 0.080983 0.104469 0.163957 0.221519 0.0241836 0.0841894 0.076401 0.154674 0.239551 0.0717952 0.0691027 0.0618768 0.0627396 0.193959 0.0950587 0.0905574 0.201376 0.209811 0.123518 0.055315 0.0485843 0.0836709 0.204236 0.272494 0.163189 0.1419 0.137937 0.124958 0.370733 0.284505 0.849666 0.627085 0.48934
error mean = 0.176032 std = 0.107796
'Computer Vision > 2010ETRI-MultiAutoCalib' 카테고리의 다른 글
Ferenc Kahlesz & Cornelius Lilge & Reinhard Klein "Easy–to–Use Calibration of Multiple–Camera Setups" (0) | 2010.07.20 |
---|---|
case study: 리프로젝션 에러 실험 결과 조사 (0) | 2010.07.20 |
J. Weng, P. Cohen, and M. Herniou "Camera calibration with distortion models and accuracy evaluation" (0) | 2010.07.16 |
DLR Camera Calibration Toolbox (0) | 2010.07.16 |
Tomas Svoboda <Multi-Camera Self-Calibration> (0) | 2010.07.07 |
Center for Machine Perception, Department of Cybernetics, Czech Technical University in Prague
'Computer Vision > 2010ETRI-MultiAutoCalib' 카테고리의 다른 글
Ferenc Kahlesz & Cornelius Lilge & Reinhard Klein "Easy–to–Use Calibration of Multiple–Camera Setups" (0) | 2010.07.20 |
---|---|
case study: 리프로젝션 에러 실험 결과 조사 (0) | 2010.07.20 |
J. Weng, P. Cohen, and M. Herniou "Camera calibration with distortion models and accuracy evaluation" (0) | 2010.07.16 |
DLR Camera Calibration Toolbox (0) | 2010.07.16 |
Test: reprojection error (Quickcam Pro4000) (0) | 2010.07.07 |