Structure from Stereo
two or more images, calibrated cameras (K(f), R, T known)
http://en.wikipedia.org/wiki/Stereo_vision
ref.
UCR stereographs
http://www.cmp.ucr.edu/site/exhibitions/stereo/
The Art of Stereo Photography
http://www.photostuff.co.uk/stereo.htm
History of Stereo Photography
http://www.rpi.edu/~ruiz/stereo_history/text/historystereog.html
Double Exposure
http://home.centurytel.net/s3dcor/index.html
Stereo Photography
http://www.shortcourses.com/book01/chapter09.htm
3D Photography links
http://www.studyweb.com/links/5243.html
National Stereoscopic Association
http://204.248.144.203/3dLibrary/welcome.html
Books on Stereo Photography
http://userwww.sfsu.edu/~hl/3d.biblio.html
http://en.wikipedia.org/wiki/Epipolar_geometry
http://en.wikipedia.org/wiki/Image_rectification
http://en.wikipedia.org/wiki/Rectification_(geometry)
Computing Rectifying Homographies for Stereo Vision
Charles Loop, Zhengyou Zhang
cross correlation
http://en.wikipedia.org/wiki/Cross_correlation
S. M. Seitz and C. R. Dyer, View Morphing, Proc. SIGGRAPH 96, 1996, pp. 21-30.
L. McMillan and G. Bishop. Plenoptic Modeling: An Image-Based Rendering System, Proc. of SIGGRAPH 95, 1995, pp. 39-46.
1) Calibrate cameras
2) Rectify images
3) Compute disparity
4) Estimate depth
SSD (Sum of Squared Difference) to choose the baseline
Structure from Motion
7 Unknowns respect to motion
translation: V = (VX , VY , VZ )
rotation : W = (WX, WY, WZ )
depth : Z
2 equations for one point
6 points with 12 unknowns -> 12 equations
http://en.wikipedia.org/wiki/Structure_from_motion
http://en.wikipedia.org/wiki/Motion_field
http://en.wikipedia.org/wiki/Nodal_point#Nodal_points
optical flow, image flow
http://en.wikipedia.org/wiki/Optical_flow
Horn-Schunck Algorithm
http://en.wikipedia.org/wiki/Horn-Schunck_algorithm
Determining Optical Flow
Artificial Intelligence Laboratory, Massachusetts Institute of Technology
Larger Motion - feature matching
Lucas Kanade style motion estimation
http://en.wikipedia.org/wiki/Lucas%E2%80%93Kanade_method
Good Features to Track
Jianbo Shi (Computer Science Department, Cornel1 University)
Carlo Tomasi (Computer Science Department, Stanford University)
http://en.wikipedia.org/wiki/Kalman_filter
'@GSMC > 이상욱: Principles of Human and Artificial Vision' 카테고리의 다른 글
Lecture 8: Uncalibrated Multiple-View Geometry: Fundamental Matrix (0) | 2008.10.28 |
---|---|
Lecture 7: Image Filtering & Edge Detection (0) | 2008.10.28 |
Lecture 5: Single Camera View Geometry (0) | 2008.10.27 |
Lecture 4: Projective Geometry (0) | 2008.10.26 |
Lecture 3: Linear Algebra for Computer Vision (0) | 2008.10.26 |