2009. 5. 27. 21:01
@GSMC/홍대형: Statistical Communication Theory
Yates & Goodman
Probability and Stochastic Process, 2nd ed.
Chapter 9 Estimation of a Random Variable
prediction
A predictor uses random variables produced in early subexperiments to estimate a random variable produced by a future subexperiment.
9.1 Optimum Estimation Given Another Random Variable
Bind estimation of X
Estimation of X given an event
Minimum Mean Square Estimation of X given Y
9.2 Linear Estimation of X given Y
9.3 MAP and ML Estimation
9.4 Linear Estimation of Random Varaiables from Random Vectors
Probability and Stochastic Process, 2nd ed.
Chapter 9 Estimation of a Random Variable
prediction
A predictor uses random variables produced in early subexperiments to estimate a random variable produced by a future subexperiment.
9.1 Optimum Estimation Given Another Random Variable
The estimate of X that produces the minimum mean square error is the expected value (or conditional expected value) of X calculated with the probability model that incorporates the available information.
Bind estimation of X
Estimation of X given an event
Minimum Mean Square Estimation of X given Y
9.2 Linear Estimation of X given Y
9.3 MAP and ML Estimation
9.4 Linear Estimation of Random Varaiables from Random Vectors
'@GSMC > 홍대형: Statistical Communication Theory' 카테고리의 다른 글
term project (0) | 2009.06.11 |
---|---|
Chapter 10 Stochastic Processes (0) | 2009.05.27 |
Chapter 8 Hypothesis Testing (0) | 2009.05.27 |
Chapter 7 Parameter Estimation Using the Sample Mean (0) | 2009.05.14 |
Chapter 6 Sums of Random Variables (0) | 2009.05.06 |