블로그 이미지
Leeway is... the freedom that someone has to take the action they want to or to change their plans.
maetel

Notice

Recent Post

Recent Comment

Recent Trackback

Archive

calendar

1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31
  • total
  • today
  • yesterday

Category

2009. 10. 22. 16:53 Computer Vision
Probabilistic Robotics
Sebastian Thrun, Wolfram Burgard and Dieter Fox
MIT Press, September 2005



Preface     xvii    
Acknowledgments    xix
I    Basics    1
1    Introduction     3
2    Recursive State Estimation    13
3    Gaussian Filters    39
4    Nonparametric Filters    85
5    Robot Motion    117
6    Robot Perception    149
II    Localization    189
7    Mobile Robot Localization: Markov and Gaussian    191
8    Mobile Robot Localization: Grid And Monte Carlo    237
III    Mapping    279
9    Occupancy Grid Mapping    281
10    Simultaneous Localization and Mapping    309
11    The GraphSLAM Algorithm    337
12    The Sparse Extended Information Filter    385
13    The FastSLAM Algorithm    437
IV    Planning and Control    485
14    Markov Decision Processes    487
15    Partially Observable Markov Decision Processes    513
16    Approximate POMDP Techniques    547
17    Exploration    569    
Bibliography    607   
Index     639


Probability robotics is a subfield of robotics concerned with perception and control.

Introduction

probabilistic robotics
: explicit representation of uncertainty using the calculus of probability theory

perception
action

Bayes filters are a probabilistic tool for estimating the state of dynamic systems.





Bayes Filters are Familiar!
• Kalman filters
• Particle filters
• Hidden Markov models
• Dynamic Bayesian networks
• Partially Observable Markov Decision Processes (POMDPs)


Kalman filter

Gaussian filter

discrete Kalman filter


Kalman filter update in 1-D

correction

prediction



Kalman filter algorithm


EKF = extended Kalman filter
: calculates a Gaussian approximation to the true belief.

Taylor series expansion
"Linearization approximates the nonlinear function g by a linear function that is tangent to g at the mean of the Gaussian."











SLAM





Techniques for Generating Consistent Maps
• Scan matching
• EKF SLAM
• Fast-SLAM
• Probabilistic mapping with a single map and a posterior about poses Mapping + Localization
• Graph-SLAM, SEIFs

Approximations for SLAM
• Local submaps
[Leonard et al.99, Bosse et al. 02, Newman et al. 03]
• Sparse links (correlations)
[Lu & Milios 97, Guivant & Nebot 01]
• Sparse extended information filters
[Frese et al. 01, Thrun et al. 02]
• Thin junction tree filters
[Paskin 03]
• Rao-Blackwellisation (FastSLAM)
[Murphy 99, Montemerlo et al. 02, Eliazar et al. 03, Haehnel et al. 03]

EKF-SLAM Summary
•Quadratic in the number of landmarks: O(n2)
• Convergence results for the linear case.
• Can diverge if nonlinearities are large!
• Have been applied successfully in large-scale environments.
• Approximations reduce the computational complexity.


ch8

eg. Xavier - Localization in a topological map
ref.  Probabilistic Robot Navigation in Partially Observable Environments 
Reid Simmons and Sven Koenig
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI '95), July, 1995, pp. 1080 - 1087.
  • Open Link in New Tab
  • Download
posted by maetel