2010. 2. 19. 16:40
Computer Vision
[소특집:이미지 인식 및 Understanding 기술] 증강현실의 기술과 동향
서용덕 · 김종성 · 홍기상 (포항공과대학교 전기전자공학과 영상처리연구실)
대한전자공학회, 전자공학회지 제29권 제7호, 2002. 7, pp. 110 ~ 120 (11pages)
camera self-calibration 카메라 자동 보정
: 어떤 물체의 삼차원 VRML 모델을 여러 장의 영상에서 얻고자 하는 경우 그 영상들을 얻는 데 사용된 카메라에 대한 위치, 방향, 초점거리 등의 정보를 구하는 과정
projective geometric method 투영기하방법
SFM = structure from motion
: 카메라 파라미터와 영상열 (image sequence) 각 프레임의 카메라간의 상대적인 위치를 계산하고, 이러한 정보를 이용하여 영상열에 보이는 물체의 대략적인 3차원 구조를 계산
trilinearity
: 임의의 3차원 구조를 보고 있는 세 개의 투시뷰 (perspective view) 사이의 대수학적 연결 관계
trifocal tensor
: trilinearity를 수학적으로 모델링한 것
(영상에서 특징점과 직선을 정합하고, 투영 카메라를 계산하며, 투영 구조를 복원하는 데 이용됨)
(기존 epipolar geometry를 이용한 방법보다 더 정확한 결과를 얻을 수 있는 것으로 알려짐)
1) projective reconstruction 투영 기하 복원
영상열에서 추출되는 특징점과 특징선들을 정확하게 연결하여 영상열에서 관찰되는 2차원 특징들과 우리가 복원하여 모델을 만들고자 하는 3차원 구조와의 초기 관계를 (실제 영상을 획득한 카메라의 파라미터들과 카메라간의 상대적인 파악함으로써) 계산
2) camera auto-calibration 카메라 자동 보정
투영 기하 정보를 유클리드 기하 정보로 변환하기 위해서 필요한 것으로, 2차원 영상 정보의 기하학적인 특징을 이용하여 투영 기하에서 유클리드 기하로 3차원 구조를 변환하는 동시에 실세계에서의 카메라 변수(초점 거리, 카메라 중심, 축 비율, 비틀림 상수)와 카메라 간의 상대적인 위치를 정확하게 계산
3) (유클리드) 구조 복원
모델의 3차원 기하 정보를 구함
: 자동 보정 단계를 통하여 복원된 3차원 정보를 그래픽 모델로 만들기 위해서 먼저 3차원 데이터를 데이터 삼각법 (Triangulation)을 이용하여 다각형 메쉬 모델 (Polygonal mesh model)로 만든 후에, 텍스처 삽입을 통해서 모델의 현실성을 증가시킴
1) 보정 패턴에 고정된 좌표계(W)와 카메라 좌표계(C) 그리고 그래픽을 위한 좌표계(G) 사이의 관계를 미리 설정해 둠
2) 카메라와 보정 패턴 사이의 상대적인 좌표변환 관계는 영상처리를 통하여 매 프레임마다 계산을 통해 얻음
3) (그래픽 좌표계와 보정 패턴 좌표계는 미리 결정되어 있어서 컴퓨터 그래픽에 의해 합성될 가상물체들의 상대적인 위치가 카메라 보정 단계 이전에 이미 알려져 있는 것이므로,) 카메라로부터 얻은 영상을 분석하여 보정 패턴을 인식하고 고정 패턴의 삼차원 좌표와 그 좌표의 영상 위치를 알아낸 후 그 둘 사이의 관계를 이용하여 카메라 보정값을 얻음
cross ratio 비조화비
4) trifocal tensor를 계산하여 카메라의 초기 정보를 계산하여 초기 영상복원을 구함
5) 영상열의 각 영상에 대해서 이전 시점의 영상 사이의 정합점들을 영상 정합 (image based matching: normalized cross correlation (NCC)를 이용하는) 방법을 통해 구함
6) RANSAC 알고리듬을 기초로 새로운 영상에 대한 카메라 행렬을 구하고, 새롭게 나타난 정합점들에 대해서 삼차원 좌표를 구함 (잘못 얻어진 정합점들을 제거하는 과정을 포함)
7) Euclidean Reconstruction: 투영 기하 공간에서 정의된 값들을 유클리드 공간에서 정의되는 값으로 변환
서용덕 · 김종성 · 홍기상 (포항공과대학교 전기전자공학과 영상처리연구실)
대한전자공학회, 전자공학회지 제29권 제7호, 2002. 7, pp. 110 ~ 120 (11pages)
camera self-calibration 카메라 자동 보정
: 어떤 물체의 삼차원 VRML 모델을 여러 장의 영상에서 얻고자 하는 경우 그 영상들을 얻는 데 사용된 카메라에 대한 위치, 방향, 초점거리 등의 정보를 구하는 과정
projective geometric method 투영기하방법
1. 삼차원 모델 복원을 통한 증강 현실
SFM = structure from motion
: 카메라 파라미터와 영상열 (image sequence) 각 프레임의 카메라간의 상대적인 위치를 계산하고, 이러한 정보를 이용하여 영상열에 보이는 물체의 대략적인 3차원 구조를 계산
trilinearity
: 임의의 3차원 구조를 보고 있는 세 개의 투시뷰 (perspective view) 사이의 대수학적 연결 관계
trifocal tensor
: trilinearity를 수학적으로 모델링한 것
(영상에서 특징점과 직선을 정합하고, 투영 카메라를 계산하며, 투영 구조를 복원하는 데 이용됨)
(기존 epipolar geometry를 이용한 방법보다 더 정확한 결과를 얻을 수 있는 것으로 알려짐)
SFM 시스템의 핵심 기술을 영상열에서 정확하게 카메라를 계산하는 것이다.
1) projective reconstruction 투영 기하 복원
영상열에서 추출되는 특징점과 특징선들을 정확하게 연결하여 영상열에서 관찰되는 2차원 특징들과 우리가 복원하여 모델을 만들고자 하는 3차원 구조와의 초기 관계를 (실제 영상을 획득한 카메라의 파라미터들과 카메라간의 상대적인 파악함으로써) 계산
Trifocal tensor의 계산은 아주 정밀한 값을 요구하므로 잘못된 특징점이나 특징선의 연결이 들어가서는 안 된다. 이러한 잘못된 연결 (Outlier)를 제거하는 방법으로 LMedS (Least Median Square)나 RANSAC (Random Sampling Consensus) 기법이 사용된다.
세 개의 뷰 단위로 연속된 영상열에서 계속적으로 계산된 trifocal tensor들과 특징점과 특징선들은 임의의 기준 좌표계를 중심으로 정렬하는 다중 뷰 정렬 (Multi-view Registration) 처리를 통하여 통합된다. 이렇게 통합된 값들은 투영 통합 최적화 (Projective Bundle Adjustment)를 거쳐 투영 기하 아래에서 발생한 에러를 최소화한다.
2) camera auto-calibration 카메라 자동 보정
투영 기하 정보를 유클리드 기하 정보로 변환하기 위해서 필요한 것으로, 2차원 영상 정보의 기하학적인 특징을 이용하여 투영 기하에서 유클리드 기하로 3차원 구조를 변환하는 동시에 실세계에서의 카메라 변수(초점 거리, 카메라 중심, 축 비율, 비틀림 상수)와 카메라 간의 상대적인 위치를 정확하게 계산
카메라 자동 보정의 방법론에서는 카메라 보정을 위한 패턴을 따로 디자인하여 사용하지 않는다. 이 경우 실시간 계산의 기능은 없어지게 된다.
3) (유클리드) 구조 복원
모델의 3차원 기하 정보를 구함
: 자동 보정 단계를 통하여 복원된 3차원 정보를 그래픽 모델로 만들기 위해서 먼저 3차원 데이터를 데이터 삼각법 (Triangulation)을 이용하여 다각형 메쉬 모델 (Polygonal mesh model)로 만든 후에, 텍스처 삽입을 통해서 모델의 현실성을 증가시킴
2. 카메라 보정에 의한 증강 현실
1) 보정 패턴에 고정된 좌표계(W)와 카메라 좌표계(C) 그리고 그래픽을 위한 좌표계(G) 사이의 관계를 미리 설정해 둠
2) 카메라와 보정 패턴 사이의 상대적인 좌표변환 관계는 영상처리를 통하여 매 프레임마다 계산을 통해 얻음
3) (그래픽 좌표계와 보정 패턴 좌표계는 미리 결정되어 있어서 컴퓨터 그래픽에 의해 합성될 가상물체들의 상대적인 위치가 카메라 보정 단계 이전에 이미 알려져 있는 것이므로,) 카메라로부터 얻은 영상을 분석하여 보정 패턴을 인식하고 고정 패턴의 삼차원 좌표와 그 좌표의 영상 위치를 알아낸 후 그 둘 사이의 관계를 이용하여 카메라 보정값을 얻음
cross ratio 비조화비
4) trifocal tensor를 계산하여 카메라의 초기 정보를 계산하여 초기 영상복원을 구함
5) 영상열의 각 영상에 대해서 이전 시점의 영상 사이의 정합점들을 영상 정합 (image based matching: normalized cross correlation (NCC)를 이용하는) 방법을 통해 구함
6) RANSAC 알고리듬을 기초로 새로운 영상에 대한 카메라 행렬을 구하고, 새롭게 나타난 정합점들에 대해서 삼차원 좌표를 구함 (잘못 얻어진 정합점들을 제거하는 과정을 포함)
7) Euclidean Reconstruction: 투영 기하 공간에서 정의된 값들을 유클리드 공간에서 정의되는 값으로 변환
카메라 자동 보정 및 투영기하공간에서의 계산식들은 모두 비선형 방정식으로 되어 있기 때문에 최소자승 오차법 (Least square error method)으로 구해지는 값들이 원래 방정식을 제대로 따르지 못하는 경우가 많이 생긴다. 따라서 비선형 최적화 과정이 항상 필요하며 유클리드 공간으로의 변환과정의 최종 단계에서 그리고 투영기하공간에서 복원값들 구할 때 최적화 과정을 적절히 배치할 필요가 있다.