doi:10.1006/rtim.1999.0199
Seong-Woo Park, Yongduek Seo and Ki-Sang Hong1
Abstract
In this paper, we present an overall algorithm for real-time camera parameter extraction, which is one of the key elements in implementing virtual studio, and we also present a new method for calculating the lens distortion parameter in real time. In a virtual studio, the motion of a virtual camera generating a graphic studio must follow the motion of the real camera in order to generate a realistic video product. This requires the calculation of camera parameters in real-time by analyzing the positions of feature points in the input video. Towards this goal, we first design a special calibration pattern utilizing the concept of cross-ratio, which makes it easy to extract and identify feature points, so that we can calculate the camera parameters from the visible portion of the pattern in real-time. It is important to consider the lens distortion when zoom lenses are used because it causes nonnegligible errors in the computation of the camera parameters. However, the Tsai algorithm, adopted for camera calibration, calculates the lens distortion through nonlinear optimization in triple parameter space, which is inappropriate for our real-time system. Thus, we propose a new linear method by calculating the lens distortion parameter independently, which can be computed fast enough for our real-time application. We implement the whole algorithm using a Pentium PC and Matrox Genesis boards with five processing nodes in order to obtain the processing rate of 30 frames per second, which is the minimum requirement for TV broadcasting. Experimental results show this system can be used practically for realizing a virtual studio.
전자공학회논문지 제36권 S편 제7호, 1999. 7
가상스튜디오 구현을 위한 실시간 카메라 추적 ( Real-Time Camera Tracking for Virtual Studio )
박성우 · 서용덕 · 홍기상 저 pp. 90~103 (14 pages)
http://uci.or.kr/G300-j12265837.v36n07p90
서지링크 한국과학기술정보연구원
가상스튜디오의 구현을 위해서 카메라의 움직임을 실시간으로 알아내는 것이 필수적이다. 기존의 가상스튜디어 구현에 사용되는 기계적인 방법을 이용한 카메라의 움직임 추적하는 방법에서 나타나는 단점들을 해결하기 위해 본 논문에서는 카메라로부터 얻어진 영상을 이용해 컴퓨터비전 기술을 응용하여 실시간으로 카메라변수들을 알아내기 위한 전체적인 알고리듬을 제안하고 실제 구현을 위한 시스템의 구성 방법에 대해 다룬다. 본 연구에서는 실시간 카메라변수 추출을 위해 영상에서 특징점을 자동으로 추출하고 인식하기 위한 방법과, 카메라 캘리브레이션 과정에서 렌즈의 왜곡특성 계산에 따른 계산량 문제를 해결하기 위한 방법을 제안한다.
Practical ways to calculate camera lens distortion for real
Pattern Recognition, Volume 34, Issue 6, June 2001, Pages 1199-1206
Seong-Woo Park, Ki-Sang Hong
generating virtual studio
Matrox Genesis boards
http://www.matrox.com/imaging/en/support/legacy/
http://en.wikipedia.org/wiki/Virtual_studio
camera tracking system : electromechanical / optical
pattern recognition
2D-3D pattern matches
planar pattern
영상에서 찾아진 특징점을 자동으로 인식하기 위해서는 공간 상의 점들과 영상에 나타난 그것들의 대응점에 대해서 같은 값을 갖는 성질이 필요한데 이것을 기하적 불변량 (Geometric Invariant)이라고 한다. 본 연구에서는 여러 불변량 가운데 cross-ratio를 이용하여 패턴을 제작하고, 영상에서 불변량의 성질을 이용하여 패턴을 자동으로 찾고 인식할 수 있게 하는 방법을 제안한다.
Tsai's algorithm
R. Y. Tsai, A Versatile Camera Calibration Technique for High Accuracy 3-D Maching Vision Metrology Using Off-the-shelf TV Cameras and Lenses. IEEE Journal of Robotics & Automation 3 (1987), pp. 323–344.
direct image mosaic method
Sawhney, H. S. and Kumar, R. 1999. True Multi-Image Alignment and Its Application to Mosaicing and Lens Distortion Correction. IEEE Trans. Pattern Anal. Mach. Intell. 21, 3 (Mar. 1999), 235-243. DOI= http://dx.doi.org/10.1109/34.754589
Lens distortion
Richard Szeliski, Computer Vision: Algorithms and Applications: 2.1.6 Lens distortions & 6.3.5 Radial distortion
radial alignment constraint
"If we presume that the lens has only radial distortion, the direction of a distorted point is the same as the direction of an undistorted point."
cross-ratio http://en.wikipedia.org/wiki/Cross_ratio
: planar projective geometric invariance
- "pencil of lines"
http://mathworld.wolfram.com/CrossRatio.html
http://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/MOHR_TRIGGS/node25.html
http://www.cut-the-knot.org/pythagoras/Cross-Ratio.shtml
http://web.science.mq.edu.au/~chris/geometry/
pattern identification
카메라의 움직임을 알아내기 위해서는 공간상에 인식이 가능한 물체가 있어야 한다. 즉, 어느 위치에서 보더라도 영상에 나타난 특징점을 찾을 수 있고, 공간상의 어느 점에 대응되는 점인지를 알 수 있어야 한다.
패턴이 인식 가능하기 위해서는 카메라가 어느 위치, 어느 자세로 보던지 항상 같은 값을 갖는 기하적 불변량 (Geometric Invariant)이 필요하다.
Coelho, C., Heller, A., Mundy, J. L., Forsyth, D. A., and Zisserman, A.1992. An experimental evaluation of projective invariants. In Geometric invariance in Computer Vision, J. L. Mundy and A. Zisserman, Eds. Mit Press Series Of Artificial Intelligence Series. MIT Press, Cambridge, MA, 87-104.
extracting the pattern in an image: chromakeying -> gradient filtering: a first-order derivative of Gaussian (DoG) -> line fitting: deriving a distorted line (that is actually a curve) equation -> feature point tracking (using intersection filter)
R1x = 0
http://en.wikipedia.org/wiki/Difference_of_Gaussians
real-time camera parameter extraction
이상적인 렌즈의 optical axis가 영상면에 수직이고 변하지 않는다고 할 때, 영상 중심은 카메라의 줌 동작 동안 고정된 값으로 계산된다. (그러나 실제 렌즈의 불완전한 특성 때문에 카메라의 줌 동작 동안 영상 중심 역시 변하게 되는데, 이 변화량은 적용 범위 이내에서 2픽셀 이하이다. 따라서 본 연구에서는 이러한 변화를 무시하고 이상적인 렌즈를 가정하여 줌동작에 의한 영상 중심을 구하게 된다.)
For zoom lenses, the image centers vary as the camera zooms because the zooming operation is executed by a composite combination of several lenses. However, when we examined the location of the image centers, its standard deviation was about 2 pixels; thus we ignored the effect of the image center change.
calculating lens distortion coefficient
Zoom lenses are zoomed by a complicated combination of several lenses so that the effective focal length and distortion coefficient vary during zooming operations.
When using the coplanar pattern with small depth variation, it turns out that focal length and z-translation cannot be separated exactly and reliably even with small noise.
카메라 변수 추출에 있어서 공간상의 특징점들이 모두 하나의 평면상에 존재할 때는 초점거리와 z 방향으로의 이동이 상호 연관 (coupling)되어 계산값의 안정성이 결여되기 쉽다.
collinearity
Collinearity represents a property when the line in the world coordinate is also shown as a line in the image. This property is not preserved when the lens has a distortion.
Once the lens distortion is calculated, we can execute camera calibration using linear methods.
filtering
가상 스튜디오 구현에 있어서는 시간 지연이 항상 같은 값을 가지게 하는 것이 필수적이므로, 실제 적용에서는 예측 (prediction)이 들어가는 필터링 방법(예를 들면, Kalman filter)은 사용할 수가 없었다.
averaging filter 평균 필터