블로그 이미지
Leeway is... the freedom that someone has to take the action they want to or to change their plans.
maetel

Notice

Recent Post

Recent Comment

Recent Trackback

Archive

calendar

1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31
  • total
  • today
  • yesterday

Category

2010. 3. 31. 20:44 Computer Vision
C. Harris and M.J. Stephens. A combined corner and edge detector. In Alvey Vision Conference, pages 147–152, 1988.



OpenCV: cvCornerHarris()

'Computer Vision' 카테고리의 다른 글

OpenCV: CV_IMAGE_ELEM  (0) 2010.04.02
OpenCV: cvFindContours  (0) 2010.04.02
OpenCV: cvCanny() 연습 코드  (0) 2010.03.31
Canny edge detection  (0) 2010.03.30
ARToolKit - simpleTest  (0) 2010.03.17
posted by maetel
2010. 3. 31. 16:58 Computer Vision
OpenCV 라이브러리의 Canny edge detection 함수

void cvCanny(const CvArr* image, CvArr* edges, double threshold1, double threshold2, int aperture_size=3)

Implements the Canny algorithm for edge detection.

Parameters:
  • image – Single-channel input image
  • edges – Single-channel image to store the edges found by the function
  • threshold1 – The first threshold
  • threshold2 – The second threshold
  • aperture_size – Aperture parameter for the Sobel operator (see Sobel)


cvCanny() 함수의 입출력 이미지는 단일 채널 (single channel)이어야 하므로,
비디오 입력에서 컬러 영상을 받은 경우 흑백 이미지(gray image)로 전환해 주어야 한다.

void cvCvtColor(const CvArr* src, CvArr* dst, int code)

Converts an image from one color space to another.

Parameters:
  • src – The source 8-bit (8u), 16-bit (16u) or single-precision floating-point (32f) image
  • dst – The destination image of the same data type as the source. The number of channels may be different
  • code – Color conversion operation that can be specifed using CV_ *src_color_space* 2 *dst_color_space* constants (see below)





입력 영상

흑백 영상

edge 검출 영상 (Canny 알고리즘)




cf.
2010/03/30 - [Visual Information Processing Lab] - Canny edge detection
cv. Image Processing and Computer Vision

'Computer Vision' 카테고리의 다른 글

OpenCV: cvFindContours  (0) 2010.04.02
Harris corner detector  (0) 2010.03.31
Canny edge detection  (0) 2010.03.30
ARToolKit - simpleTest  (0) 2010.03.17
Three-dimensional computer vision: a geometric viewpoint By Olivier Faugeras  (0) 2010.03.15
posted by maetel
2010. 3. 30. 21:05 Computer Vision
Canny algorithm for edge detection


Canny, J. 1986. A Computational Approach to Edge Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence. 8(6).



The Hypermedia Image Processing Reference - Feature Detectors - Canny Edge Detector

OpenCV: cvCanny()

posted by maetel
2009. 11. 30. 16:06 Computer Vision
http://bayesclasses.sourceforge.net/

내용은 다음과 같다.
http://bayesclasses.sourceforge.net/Bayesian%20Filtering%20Classes.html


test log 2009-12-02


0. 랩 공용 노트북 사양
OS: 32bit Windows Vista Home Basic K Service Pack 1
processor: Intel(R) Core(TM)2 Duo CPU T5750 @ 2.00GHz 2.00 GHz
RAM: 2.00GM

Microsoft Visual Studio 2005 버전 8.050727.867 (vsvista.050727-8600
Microsoft.Net Framework 버전 2.0.50727 서비스 팩



1. 다운로드
1-1. Boost 다운로드 및 설치
http://www.boost.org/에서 직접 다운로드하여 설치할 수도 있으나 복잡하다고 한다. 
http://www.boostpro.com/에서 BoostPro 1.40.0 Installer를  다운로드 후 실행하여
자동으로 설치 (VS 8버전에 맞는 모든 옵션 선택)

1-2. Bayes++  다운로드
bf-C++source-2003.8-6.zip   141.5 KB 2006-10-04
Bayes++.sln 파일 실행, Visual Studio 자동 로딩, 버전 문제로 백업 후 업그레이드

1-3. Bayes++ solution에 path 추가
VS 메뉴 > 도구 > 옵션 >


2. 디버깅



posted by maetel
2009. 11. 17. 15:48 Computer Vision
Kalman Filtering
http://academic.csuohio.edu/simond/courses/eec644/kalman.pdf

72-79p, Embedded Systems Programming f e a tur e, JUNE 2001
http://www.embedded.com/9900168?_requestid=49635

The Kalman filter update equations in C
http://www.embedded.com/9900168?pgno=2
matrix algebra reference
ftp://ftp.embedded.com/pub/2001/simon06


Dan Simon 
http://academic.csuohio.edu/simond/


Kalman filter
: estimates system states that can only be observed indirectly or inaccurately by the system itself.
: estimates the variables of a wide range of processes.
: estimates the states of a linear system.
: minimizes the variance of the estimation error

Linear system
x: state of the system
u: known input to the system
y: measured output
w: process noise
z: measurement noise


http://wiki.answers.com/Q/What_is_a_feedback_system
A feedback system, in general engineering terms, is a system whose output if fed back to the input, and depending on the output, your input is adjusted so as to reach a steady-state. In colloquial language, you adjust your input based on the output of your system so as to achieve a certain end, like minimizing disturbance, cancelling echo (in a speech system) and so on.


Criteria of an Estimator
1) The expected value of the estimate should be equal to the expected value of the state.
2) The estimator should be with the smallest possible error variance.


Requirement of Kalman filter
1) The average value of w is zero and average value of z is zero.
2) No correlation exists between w and z. w_k and z_k are independent random variables.


Kalman filter equations

K matrix: Kalman gain
P matrix: estimation error covariance



http://en.wikipedia.org/wiki/Three_sigma_rule
In statistics, the 68-95-99.7 rule, or three-sigma rule, or empirical rule, states that for a normal distribution, nearly all values lie within 3 standard deviations of the mean.


"steady state Kalman filter"
 - K matrix & P matrix are constant

"extended Kalman filter"
: an extension of linear Kalman filter theory to nonlinear systems

"Kalman smoother"
: to estimate the state as a function of time so to reconstruct the trajectory after the fact


H infinity filter
=> correlated noise problem
=> unknown noise covariances problem

http://academic.csuohio.edu/simond/estimation/


Rudolph Kalman

Peter Swerling, 1958

Karl Gauss's method of least squares, 1795

spacecraft navigation for the Apollo space program


> applications
all forms of navigation (aerospace, land, and marine)
nuclear power plant instrumentation
demographic modeling
manufacturing
the detection of underground radioactivity
fuzzy logic and neural network training



Gelb, A. Applied Optimal Estimation. Cambridge, MA: MIT Press, 1974.

Anderson, B. and J. Moore. Optimal Filtering. Englewood Cliffs, NJ: Prentice-Hall, 1979.

Grewal, M. and A. Andrews. Kalman Filtering Theory and Practice. Englewood Cliffs, NJ: Prentice-Hall, 1993.

Sorenson, H. Kalman Filtering: Theory and Application. Los Alamitos, CA: IEEE Press, 1985.

Peter Joseph’s Web site @http://ourworld.compuserve.com/homepages/PDJoseph/

posted by maetel
2009. 11. 10. 15:14 Computer Vision
1차원 particle filter 간단 예제
// 1-D Particle filter algorithm exercise
// 2009-11-06
// ref. Probabilistic Robotics: 98p

#include <iostream>
#include <cstdlib> //defining RAND_MAX
#include <ctime> //time as a random seed
#include <cmath>
using namespace std;

#define PI 3.14159265
#define N 10 //number of particles

////////////////////////////////////////////////////////////////////////////
// random number generators written by kyu
double uniform_random(void) {
   
    return (double) rand() / (double) RAND_MAX;
   
}

double gaussian_random(void) {
   
    static int next_gaussian = 0;
    static double saved_gaussian_value;
   
    double fac, rsq, v1, v2;
   
    if(next_gaussian == 0) {
       
        do {
            v1 = 2.0 * uniform_random() - 1.0;
            v2 = 2.0 * uniform_random() - 1.0;
            rsq = v1 * v1 + v2 * v2;
        }
        while(rsq >= 1.0 || rsq == 0.0);
        fac = sqrt(-2.0 * log(rsq) / rsq);
        saved_gaussian_value = v1 * fac;
        next_gaussian = 1;
        return v2 * fac;
    }
    else {
        next_gaussian = 0;
        return saved_gaussian_value;
    }
}

double normal_distribution(double mean, double standardDeviation, double state) {
   
    double variance = standardDeviation * standardDeviation;
   
    return exp(-0.5 * (state - mean) * (state - mean) / variance ) / sqrt(2 * PI * variance);
}

////////////////////////////////////////////////////////////////////////////


int main (int argc, char * const argv[]) {
   
    double groundtruth[] = {0.5, 2.0, 3.5, 5.0, 7.0, 8.0, 10.0};
    double measurement[] = {0.4, 2.1, 3.2, 5.3, 7.4, 8.1, 9.6};
    double transition_noise = 0.3; // covariance of Gaussian noise to control
    double measurement_noise = 0.3; // covariance of Gaussian noise to measurement
   
    double x[N]; // N particles
    double x_p[N]; // predicted particles
    double state; // estimated state with particles
    double x_u[N]; // temporary variables for updating particles
    double v[N]; // velocity
    double v_u[N]; // temporary variables for updating velocity   
    double m[N]; // measurement
    double l[N]; // likelihood
    double lsum; // sum of likelihoods
    double w[N]; // weight of each particle
    double a[N]; // portion between particles
   
    double grn[N]; // Gaussian random number
    double urn[N]; // uniform random number
   
    srand(time(NULL));        
   
    // initialize particles
    for (int n = 0; n < N; n++)
    {
        x[n] = 0.0;
        v[n] = 0.0;
        w[n] = (double)1/(double)N;           
    }
   
    int step = 7;
    for (int t = 0; t < step; t++)
    {
        cout << "step " << t << endl;       
        // measure
        m[t] = measurement[t];
       
        cout << "groundtruth = " << groundtruth[t] << endl;
        cout << "measurement = " << measurement[t] << endl;       
       
        lsum = 0;
        for (int n = 0; n < N; n++)
        {
            // predict
            grn[n] = gaussian_random();
            x_p[n] = x[n] + v[n] + transition_noise * grn[n];
//            cout << grn[n] << endl;
           
            // estimate likelihood between measurement and each prediction
            l[n] = normal_distribution(m[t], measurement_noise, x_p[n]); // ref. 14p eqn(2.3)
            lsum += l[n];
        }
//            cout << "lsum = " << lsum << endl;       
       
        // estimate states       
        state = 0;
        for (int n = 0; n < N; n++)
        {
            w[n] = l[n] / lsum; // update normalized weights of particles           
//            cout << "w" << n << "= " << w[n] << "  ";               
            state += w[n] * x_p[n]; // estimate the state with particles
        }   
        cout << "estimation = " << state << endl;
       
        // update       
        // define integrated portions of each particles; 0 < a[0] < a[1] < a[2] = 1
        a[0] = w[0];
        for (int n = 1; n < N; n++)
        {
            a[n] = a[n - 1] + w[n];
//            cout << "a" << n << "= " << a[n] << "  ";           
        }
        for (int n = 0; n < N; n++)
        {   
            // select a particle from the distribution
            urn[n] = uniform_random();
            int select;
            for (int k = 0; k < N; k++)
            {
                if (urn[n] < a[k] )
                {
                    select = k;
                    break;
                }
            }
            cout << "select" << n << "= " << select << "  ";       
            // retain the selection 
            x_u[n] = x_p[select];
            v_u[n] = x_p[select] - x[select];
        }
        cout << endl << endl;
        // updated each particle and its velocity
        for (int n = 0; n < N; n++)
        {
            x[n] = x_u[n];
            v[n] = v_u[n];
//            cout << "v" << n << "= " << v[n] << "  ";   
        }
    }
   
    return 0;
}



실행 결과:




2차원 particle filter 간단 예제

// 2-D Particle filter algorithm exercise
// 2009-11-10
// ref. Probabilistic Robotics: 98p

#include <OpenCV/OpenCV.h> // matrix operations
#include <iostream>
#include <cstdlib> // RAND_MAX
#include <ctime> // time as a random seed
#include <cmath>
#include <algorithm>
using namespace std;

#define PI 3.14159265
#define N 100 //number of particles

// uniform random number generator
double uniform_random(void) {
   
    return (double) rand() / (double) RAND_MAX;
   
}

// Gaussian random number generator
double gaussian_random(void) {
   
    static int next_gaussian = 0;
    static double saved_gaussian_value;
   
    double fac, rsq, v1, v2;
   
    if(next_gaussian == 0) {
       
        do {
            v1 = 2.0 * uniform_random() - 1.0;
            v2 = 2.0 * uniform_random() - 1.0;
            rsq = v1 * v1 + v2 * v2;
        }
        while(rsq >= 1.0 || rsq == 0.0);
        fac = sqrt(-2.0 * log(rsq) / rsq);
        saved_gaussian_value = v1 * fac;
        next_gaussian = 1;
        return v2 * fac;
    }
    else {
        next_gaussian = 0;
        return saved_gaussian_value;
    }
}

double normal_distribution(double mean, double standardDeviation, double state) {
   
    double variance = standardDeviation * standardDeviation;
   
    return exp(-0.5 * (state - mean) * (state - mean) / variance ) / sqrt(2 * PI * variance);
}
////////////////////////////////////////////////////////////////////////////

// set groundtruth
void set_groundtruth (CvMat* groundtruth, double x, double y)
{
    cvmSet(groundtruth, 0, 0, x); // x-value
    cvmSet(groundtruth, 1, 0, y); // y-value
   
    cout << "groundtruth = " << cvmGet(groundtruth,0,0) << "  " << cvmGet(groundtruth,1,0) << endl;
}


// count the number of detections in measurement process
int count_detections (void)
{
    // set cases of measurement results
    double mtype[4];
    mtype [0] = 0.0;
    mtype [1] = 0.5;
    mtype [2] = mtype[1] + 0.3;
    mtype [3] = mtype[2] + 0.2;
//    cout << "check measurement type3 = " << mtype[3] << endl; // just to check

    // select a measurement case
    double mrn = uniform_random();       
    int type = 1;
    for ( int k = 0; k < 3; k++ )
    {   
        if ( mrn < mtype[k] )
        {
            type = k;
            break;
        }
    }
    return type;
}

// distance between measurement and prediction
double distance(CvMat* measurement, CvMat* prediction)
{
    double distance2 = 0;
    double differance = 0;
    for (int u = 0; u < 2; u++)
    {
        differance = cvmGet(measurement,u,0) - cvmGet(prediction,u,0);
        distance2 += differance * differance;
    }
    return sqrt(distance2);
}


// likelihood based on multivariative normal distribution (ref. 15p eqn(2.4))
double likelihood(CvMat *mean, CvMat *covariance, CvMat *sample) {
   
    CvMat* diff = cvCreateMat(2, 1, CV_64FC1);
    cvSub(sample, mean, diff); // sample - mean -> diff
    CvMat* diff_t = cvCreateMat(1, 2, CV_64FC1);
    cvTranspose(diff, diff_t); // transpose(diff) -> diff_t
    CvMat* cov_inv = cvCreateMat(2, 2, CV_64FC1);
    cvInvert(covariance, cov_inv); // transpose(covariance) -> cov_inv
    CvMat* tmp = cvCreateMat(2, 1, CV_64FC1);
    CvMat* dist = cvCreateMat(1, 1, CV_64FC1);
    cvMatMul(cov_inv, diff, tmp); // cov_inv * diff -> tmp   
    cvMatMul(diff_t, tmp, dist); // diff_t * tmp -> dist
   
    double likeliness = exp( -0.5 * cvmGet(dist, 0, 0) );
    double bound = 0.0000001;
    if ( likeliness < bound )
    {
        likeliness = bound;
    }
    return likeliness;
//    return exp( -0.5 * cvmGet(dist, 0, 0) );
//    return max(0.0000001, exp(-0.5 * cvmGet(dist, 0, 0)));   
   
}



/*
struct particle
{
    double weight; // weight of a particle
    CvMat* loc_p = cvCreateMat(2, 1, CV_64FC1); // previously estimated position of a particle
    CvMat* loc = cvCreateMat(2, 1, CV_64FC1); // currently estimated position of a particle
    CvMat* velocity = cvCreateMat(2, 1, CV_64FC1); // estimated velocity of a particle
    cvSub(loc, loc_p, velocity); // loc - loc_p -> velocity
};
*/


int main (int argc, char * const argv[]) {
   
    srand(time(NULL));

    int width = 400; // width of image window
    int height = 400; // height of image window   
   
    IplImage *iplImg = cvCreateImage(cvSize(width, height), 8, 3);
    cvZero(iplImg);
   
    cvNamedWindow("ParticleFilter-2d", 0);
   
   
     // covariance of Gaussian noise to control
    CvMat* transition_noise = cvCreateMat(2, 2, CV_64FC1);
    cvmSet(transition_noise, 0, 0, 3); //set transition_noise(0,0) to 0.1
    cvmSet(transition_noise, 0, 1, 0.0);
    cvmSet(transition_noise, 1, 0, 0.0);
    cvmSet(transition_noise, 1, 1, 6);      
   
    // covariance of Gaussian noise to measurement
    CvMat* measurement_noise = cvCreateMat(2, 2, CV_64FC1);
    cvmSet(measurement_noise, 0, 0, 2); //set measurement_noise(0,0) to 0.3
    cvmSet(measurement_noise, 0, 1, 0.0);
    cvmSet(measurement_noise, 1, 0, 0.0);
    cvmSet(measurement_noise, 1, 1, 2);  
   
    CvMat* state = cvCreateMat(2, 1, CV_64FC1);
    // declare particles
/*    particle pb[N]; // N estimated particles
    particle pp[N]; // N predicted particles       
    particle pu[N]; // temporary variables for updating particles       
*/
    CvMat* pb [N]; // estimated particles
    CvMat* pp [N]; // predicted particles
    CvMat* pu [N]; // temporary variables to update a particle
    CvMat* v[N]; // estimated velocity of each particle
    CvMat* vu[N]; // temporary varialbe to update the velocity   
    double w[N]; // weight of each particle
    for (int n = 0; n < N; n++)
    {
        pb[n] = cvCreateMat(2, 1, CV_64FC1);
        pp[n] = cvCreateMat(2, 1, CV_64FC1);
        pu[n] = cvCreateMat(2, 1, CV_64FC1);   
        v[n] = cvCreateMat(2, 1, CV_64FC1);   
        vu[n] = cvCreateMat(2, 1, CV_64FC1);           
    }   
   
    // initialize particles and the state
    for (int n = 0; n < N; n++)
    {
        w[n] = (double) 1 / (double) N; // equally weighted
        for (int row=0; row < 2; row++)
        {
            cvmSet(pb[n], row, 0, 0.0);
            cvmSet(v[n], row, 0, 15 * uniform_random());
            cvmSet(state, row, 0, 0.0);           
        }
    }
   
    // set the system   
    CvMat* groundtruth = cvCreateMat(2, 1, CV_64FC1); // groundtruth of states   
    CvMat* measurement [3]; // measurement of states
    for (int k = 0; k < 3; k++) // 3 types of measurement
    {
        measurement[k] = cvCreateMat(2, 1, CV_64FC1);
    }
   
    cout << "start filtering... " << endl << endl;
    int step = 30; //30; // timestep
   
    for (int t = 0; t < step; t++) // for "step" steps
    {
//        cvZero(iplImg);
        cout << "step " << t << endl;
       
        // set groundtruth
        double gx = 10 * t;
        double gy = (-1.0 / width ) * (gx - width) * (gx - width) + height;
        set_groundtruth(groundtruth, gx, gy);

        // set measurement types
        double c1 = 1.0, c2 = 4.0;   
        // measured point 1
        cvmSet(measurement[0], 0, 0, gx + (c1 * cvmGet(measurement_noise,0,0) * gaussian_random())); // x-value
        cvmSet(measurement[0], 1, 0, gy + (c1 * cvmGet(measurement_noise,1,1) * gaussian_random())); // y-value
        // measured point 2
        cvmSet(measurement[1], 0, 0, gx + (c2 * cvmGet(measurement_noise,0,0) * gaussian_random())); // x-value
        cvmSet(measurement[1], 1, 0, gy + (c2 * cvmGet(measurement_noise,1,1) * gaussian_random())); // y-value
        // measured point 3 // clutter noise
        cvmSet(measurement[2], 0, 0, width*uniform_random()); // x-value
        cvmSet(measurement[2], 1, 0, height*uniform_random()); // y-value       

        // count the number of measurements       
        int count = count_detections(); // number of detections
        cout << "# of measured points = " << count << endl;
   
        // get measurement           
        for (int index = 0; index < count; index++)
        {
            cout << "measurement #" << index << " : "
                << cvmGet(measurement[index],0,0) << "  " << cvmGet(measurement[index],1,0) << endl;
           
            cvCircle(iplImg, cvPoint(cvRound(cvmGet(measurement[index],0,0)), cvRound(cvmGet(measurement[index],1,0))), 4, CV_RGB(200, 0, 255), 1);
           
        }
       
       
        double like[N]; // likelihood between measurement and prediction
        double like_sum = 0; // sum of likelihoods
       
        for (int n = 0; n < N; n++) // for "N" particles
        {
            // predict
            double prediction;
            for (int row = 0; row < 2; row++)
            {
               
                prediction = cvmGet(pb[n],row,0) + cvmGet(v[n],row,0) + cvmGet(transition_noise,row,row) * gaussian_random();
                cvmSet(pp[n], row, 0, prediction);
            }
           
            cvLine(iplImg, cvPoint(cvRound(cvmGet(pp[n],0,0)), cvRound(cvmGet(pp[n],1,0))), cvPoint(cvRound(cvmGet(pb[n],0,0)), cvRound(cvmGet(pb[n],1,0))), CV_RGB(100,100,0), 1);           
            cvCircle(iplImg, cvPoint(cvRound(cvmGet(pp[n],0,0)), cvRound(cvmGet(pp[n],1,0))), 1, CV_RGB(255, 255, 0));

           
           
            // evaluate measurements
            double range = (double) width; // range to search measurements for each particle
//            cout << "range of distances = " << range << endl;
            int mselected;
            for (int index = 0; index < count; index++)
            {
                double d = distance(measurement[index], pp[n]);
               
                if ( d < range )
                {
                    range = d;
                    mselected = index; // selected measurement
                }
            }
///            cout << "selected measurement # = " << mselected << endl;
            like[n] = likelihood(measurement[mselected], measurement_noise, pp[n]);   
       
///            cout << "likelihood of #" << n << " = " << like[n] << endl;
           
            like_sum += like[n];
        }
       
///        cout << "sum of likelihoods = " << like_sum << endl;
       
        // estimate states       
        double state_x = 0.0;
        double state_y = 0.0;
   
        // estimate the state with predicted particles
        for (int n = 0; n < N; n++) // for "N" particles
        {
            w[n] = like[n] / like_sum; // update normalized weights of particles           
///            cout << "w" << n << "= " << w[n] << "  ";               
            state_x += w[n] * cvmGet(pp[n], 0, 0); // x-value
            state_y += w[n] * cvmGet(pp[n], 1, 0); // y-value
        }
        cvmSet(state, 0, 0, state_x);
        cvmSet(state, 1, 0, state_y);       
       
        cout << endl << "* * * * * *" << endl;       
        cout << "estimation = " << cvmGet(state,0,0) << "  " << cvmGet(state,1,0) << endl;
        cvCircle(iplImg, cvPoint(cvRound(cvmGet(state,0,0)), cvRound(cvmGet(state,1,0))), 4, CV_RGB(0, 255, 200), 2);
   
        // update particles       
        cout << endl << "updating particles" << endl;
        double urn[N]; // uniform random number
        double a[N]; // portion between particles

        // define integrated portions of each particles; 0 < a[0] < a[1] < a[2] = 1
        a[0] = w[0];
        for (int n = 1; n < N; n++)
        {
            a[n] = a[n - 1] + w[n];
//            cout << "a" << n << "= " << a[n] << "  ";           
        }
//        cout << "a" << N << "= " << a[N] << "  " << endl;           
       
        for (int n = 0; n < N; n++)
        {   
            // select a particle from the distribution
            urn[n] = uniform_random();
            int pselected;
            for (int k = 0; k < N; k++)
            {
                if (urn[n] < a[k] )
                {
                    pselected = k;
                    break;
                }
            }
///            cout << "particle " << n << " => " << pselected << "  ";       
            // retain the selection 
            cvmSet(pu[n], 0, 0, cvmGet(pp[pselected],0,0)); // x-value
            cvmSet(pu[n], 1, 0, cvmGet(pp[pselected],1,0)); // y-value
           
            cvSub(pp[pselected], pb[pselected], vu[n]); // pp - pb -> vu
   
        }
        // updated each particle and its velocity
        for (int n = 0; n < N; n++)
        {
            for (int row = 0; row < 2; row++)
            {
                cvmSet(pb[n], row, 0, cvmGet(pu[n],row,0));
                cvmSet(v[n], row , 0, cvmGet(vu[n],row,0));
            }
        }
        cvCircle(iplImg, cvPoint(cvRound(cvmGet(groundtruth,0,0)), cvRound(cvmGet(groundtruth,1,0))), 4, cvScalarAll(255), 1);
       
        cout << endl << endl ;
       
        cvShowImage("ParticleFilter-2d", iplImg);
        cvWaitKey(1000);   
       
       
       
       
    } // for "t"
   
   
    cvWaitKey();   
   
    return 0;
}




실행 결과:

콘솔 창:



Lessons:
1. transition noise와 measurement noise, (그것들의 covariances) 그리고 각 입자의 초기 위치와 상태를 알맞게 설정하는 것이 관건임을 배웠다. 그것을 Tuning이라 부른다는 것도.
1-1. 코드에서 가정한 system에서는 특히 입자들의 초기 속도를 어떻게 주느냐에 따라 tracking의 성공 여부가 좌우된다.
2. 실제 상태는 등가속도 운동을 하는 비선형 시스템이나, 여기에서는 프레임 간의 운동을 등속으로 가정하여 선형 시스템으로 근사한 모델을 적용한 것이다.
2-1. 그러므로 여기에 Kalman filter를 적용하여 결과를 비교해 볼 수 있겠다. 이 경우, 3차원 Kalman gain을 계산해야 한다.
2-2. 분홍색 부분을 고쳐 비선형 모델로 만든 후 Particle filtering을 하면 결과가 더 좋지 않을까? Tuning도 더 쉬어지지 않을까?
3. 코드 좀 정리하자. 너무 지저분하다. ㅡㅡ;
4. 아니, 근데 영 헤매다가 갑자기 따라잡는 건 뭐지??? (아래 결과)

white: groundtruth / pink: measurements / green: estimation



console:



// 2-D Particle filter algorithm exercise
// lym, VIP Lab, Sogang Univ.
// 2009-11-23
// ref. Probabilistic Robotics: 98p

#include <OpenCV/OpenCV.h> // matrix operations
#include <iostream>
#include <cstdlib> // RAND_MAX
#include <ctime> // time as a random seed
#include <cmath>
#include <algorithm>
using namespace std;

#define PI 3.14159265
#define N 100 //number of particles

int width = 400; // width of image window
int height = 400; // height of image window   
IplImage *iplImg = cvCreateImage(cvSize(width, height), 8, 3);

// uniform random number generator
double uniform_random(void) {
   
    return (double) rand() / (double) RAND_MAX;
   
}

// Gaussian random number generator
double gaussian_random(void) {
   
    static int next_gaussian = 0;
    static double saved_gaussian_value;
   
    double fac, rsq, v1, v2;
   
    if(next_gaussian == 0) {
       
        do {
            v1 = 2.0 * uniform_random() - 1.0;
            v2 = 2.0 * uniform_random() - 1.0;
            rsq = v1 * v1 + v2 * v2;
        }
        while(rsq >= 1.0 || rsq == 0.0);
        fac = sqrt(-2.0 * log(rsq) / rsq);
        saved_gaussian_value = v1 * fac;
        next_gaussian = 1;
        return v2 * fac;
    }
    else {
        next_gaussian = 0;
        return saved_gaussian_value;
    }
}

double normal_distribution(double mean, double standardDeviation, double state) {
   
    double variance = standardDeviation * standardDeviation;
   
    return exp(-0.5 * (state - mean) * (state - mean) / variance ) / sqrt(2 * PI * variance);
}
////////////////////////////////////////////////////////////////////////////

// set groundtruth
void get_groundtruth (CvMat* groundtruth, double x, double y)
{
    cvmSet(groundtruth, 0, 0, x); // x-value
    cvmSet(groundtruth, 1, 0, y); // y-value
   
    cout << "groundtruth = " << cvmGet(groundtruth,0,0) << "  " << cvmGet(groundtruth,1,0) << endl;
    cvCircle(iplImg, cvPoint(cvRound(cvmGet(groundtruth,0,0)), cvRound(cvmGet(groundtruth,1,0))), 2, cvScalarAll(255), 2);   
}


// count the number of detections in measurement process
int count_detections (void)
{
    // set cases of measurement results
    double mtype[4];
    mtype [0] = 0.0;
    mtype [1] = 0.5;
    mtype [2] = mtype[1] + 0.3;
    mtype [3] = mtype[2] + 0.2;
    //    cout << "check measurement type3 = " << mtype[3] << endl; // just to check
   
    // select a measurement case
    double mrn = uniform_random();       
    int type = 1;
    for ( int k = 0; k < 3; k++ )
    {   
        if ( mrn < mtype[k] )
        {
            type = k;
            break;
        }
    }
    return type;
}

// get measurements
int get_measurement (CvMat* measurement[], CvMat* measurement_noise, double x, double y)
{
    // set measurement types
    double c1 = 1.0, c2 = 4.0;   
    // measured point 1
    cvmSet(measurement[0], 0, 0, x + (c1 * cvmGet(measurement_noise,0,0) * gaussian_random())); // x-value
    cvmSet(measurement[0], 1, 0, y + (c1 * cvmGet(measurement_noise,1,1) * gaussian_random())); // y-value
    // measured point 2
    cvmSet(measurement[1], 0, 0, x + (c2 * cvmGet(measurement_noise,0,0) * gaussian_random())); // x-value
    cvmSet(measurement[1], 1, 0, y + (c2 * cvmGet(measurement_noise,1,1) * gaussian_random())); // y-value
    // measured point 3 // clutter noise
    cvmSet(measurement[2], 0, 0, width*uniform_random()); // x-value
    cvmSet(measurement[2], 1, 0, height*uniform_random()); // y-value       

    // count the number of measured points   
    int number = count_detections(); // number of detections
    cout << "# of measured points = " << number << endl;

    // get measurement           
    for (int index = 0; index < number; index++)
    {
        cout << "measurement #" << index << " : "
        << cvmGet(measurement[index],0,0) << "  " << cvmGet(measurement[index],1,0) << endl;
       
        cvCircle(iplImg, cvPoint(cvRound(cvmGet(measurement[index],0,0)), cvRound(cvmGet(measurement[index],1,0))), 4, CV_RGB(255, 0, 255), 2);           
    }

    return number;
}


// distance between measurement and prediction
double distance(CvMat* measurement, CvMat* prediction)
{
    double distance2 = 0;
    double differance = 0;
    for (int u = 0; u < 2; u++)
    {
        differance = cvmGet(measurement,u,0) - cvmGet(prediction,u,0);
        distance2 += differance * differance;
    }
    return sqrt(distance2);
}


// likelihood based on multivariative normal distribution (ref. 15p eqn(2.4))
double likelihood(CvMat *mean, CvMat *covariance, CvMat *sample) {
   
    CvMat* diff = cvCreateMat(2, 1, CV_64FC1);
    cvSub(sample, mean, diff); // sample - mean -> diff
    CvMat* diff_t = cvCreateMat(1, 2, CV_64FC1);
    cvTranspose(diff, diff_t); // transpose(diff) -> diff_t
    CvMat* cov_inv = cvCreateMat(2, 2, CV_64FC1);
    cvInvert(covariance, cov_inv); // transpose(covariance) -> cov_inv
    CvMat* tmp = cvCreateMat(2, 1, CV_64FC1);
    CvMat* dist = cvCreateMat(1, 1, CV_64FC1);
    cvMatMul(cov_inv, diff, tmp); // cov_inv * diff -> tmp   
    cvMatMul(diff_t, tmp, dist); // diff_t * tmp -> dist
   
    double likeliness = exp( -0.5 * cvmGet(dist, 0, 0) );
    double bound = 0.0000001;
    if ( likeliness < bound )
    {
        likeliness = bound;
    }
    return likeliness;
    //    return exp( -0.5 * cvmGet(dist, 0, 0) );
    //    return max(0.0000001, exp(-0.5 * cvmGet(dist, 0, 0)));   
}


int main (int argc, char * const argv[]) {
   
    srand(time(NULL));

    // set the system   
    CvMat* state = cvCreateMat(2, 1, CV_64FC1);    // state of the system to be estimated
    CvMat* groundtruth = cvCreateMat(2, 1, CV_64FC1); // groundtruth of states   
    CvMat* measurement [3]; // measurement of states
    for (int k = 0; k < 3; k++) // 3 types of measurement
    {
        measurement[k] = cvCreateMat(2, 1, CV_64FC1);
    }   

    // declare particles
    CvMat* pb [N]; // estimated particles
    CvMat* pp [N]; // predicted particles
    CvMat* pu [N]; // temporary variables to update a particle
    CvMat* v[N]; // estimated velocity of each particle
    CvMat* vu[N]; // temporary varialbe to update the velocity   
    double w[N]; // weight of each particle
    for (int n = 0; n < N; n++)
    {
        pb[n] = cvCreateMat(2, 1, CV_64FC1);
        pp[n] = cvCreateMat(2, 1, CV_64FC1);
        pu[n] = cvCreateMat(2, 1, CV_64FC1);   
        v[n] = cvCreateMat(2, 1, CV_64FC1);   
        vu[n] = cvCreateMat(2, 1, CV_64FC1);           
    }   
   
    // initialize the state and particles
    for (int n = 0; n < N; n++)
    {
        w[n] = (double) 1 / (double) N; // equally weighted
        for (int row=0; row < 2; row++)
        {
            cvmSet(state, row, 0, 0.0);   
            cvmSet(pb[n], row, 0, 0.0);
            cvmSet(v[n], row, 0, 15 * uniform_random());
        }
    }
   
    // set the process noise
    // covariance of Gaussian noise to control
    CvMat* transition_noise = cvCreateMat(2, 2, CV_64FC1);
    cvmSet(transition_noise, 0, 0, 3); //set transition_noise(0,0) to 3.0
    cvmSet(transition_noise, 0, 1, 0.0);
    cvmSet(transition_noise, 1, 0, 0.0);
    cvmSet(transition_noise, 1, 1, 6);      
   
    // set the measurement noise
    // covariance of Gaussian noise to measurement
    CvMat* measurement_noise = cvCreateMat(2, 2, CV_64FC1);
    cvmSet(measurement_noise, 0, 0, 2); //set measurement_noise(0,0) to 2.0
    cvmSet(measurement_noise, 0, 1, 0.0);
    cvmSet(measurement_noise, 1, 0, 0.0);
    cvmSet(measurement_noise, 1, 1, 2);  
   
    // initialize the image window
    cvZero(iplImg);   
    cvNamedWindow("ParticleFilter-3d", 0);

    cout << "start filtering... " << endl << endl;
    int step = 30; //30; // timestep
   
    for (int t = 0; t < step; t++) // for "step" steps
    {
//        cvZero(iplImg);
        cout << "step " << t << endl;
       
        // get the groundtruth
        double gx = 10 * t;
        double gy = (-1.0 / width ) * (gx - width) * (gx - width) + height;
        get_groundtruth(groundtruth, gx, gy);
        // get measurements
        int count = get_measurement(measurement, measurement_noise, gx, gy);
       
        double like[N]; // likelihood between measurement and prediction
        double like_sum = 0; // sum of likelihoods
       
        for (int n = 0; n < N; n++) // for "N" particles
        {
            // predict
            double prediction;
            for (int row = 0; row < 2; row++)
            {
                prediction = cvmGet(pb[n],row,0) + cvmGet(v[n],row,0) + cvmGet(transition_noise,row,row) * gaussian_random();
                cvmSet(pp[n], row, 0, prediction);
            }
//            cvLine(iplImg, cvPoint(cvRound(cvmGet(pp[n],0,0)), cvRound(cvmGet(pp[n],1,0))), cvPoint(cvRound(cvmGet(pb[n],0,0)), cvRound(cvmGet(pb[n],1,0))), CV_RGB(100,100,0), 1);           
//            cvCircle(iplImg, cvPoint(cvRound(cvmGet(pp[n],0,0)), cvRound(cvmGet(pp[n],1,0))), 1, CV_RGB(255, 255, 0));
           
            // evaluate measurements
            double range = (double) width; // range to search measurements for each particle
//            cout << "range of distances = " << range << endl;
            int mselected;
            for (int index = 0; index < count; index++)
            {
                double d = distance(measurement[index], pp[n]);
               
                if ( d < range )
                {
                    range = d;
                    mselected = index; // selected measurement
                }
            }
//            cout << "selected measurement # = " << mselected << endl;
            like[n] = likelihood(measurement[mselected], measurement_noise, pp[n]);   
//            cout << "likelihood of #" << n << " = " << like[n] << endl;           
            like_sum += like[n];
        }
//        cout << "sum of likelihoods = " << like_sum << endl;
       
        // estimate states       
        double state_x = 0.0;
        double state_y = 0.0;
        // estimate the state with predicted particles
        for (int n = 0; n < N; n++) // for "N" particles
        {
            w[n] = like[n] / like_sum; // update normalized weights of particles           
//            cout << "w" << n << "= " << w[n] << "  ";               
            state_x += w[n] * cvmGet(pp[n], 0, 0); // x-value
            state_y += w[n] * cvmGet(pp[n], 1, 0); // y-value
        }
        cvmSet(state, 0, 0, state_x);
        cvmSet(state, 1, 0, state_y);       
       
        cout << endl << "* * * * * *" << endl;       
        cout << "estimation = " << cvmGet(state,0,0) << "  " << cvmGet(state,1,0) << endl;
        cvCircle(iplImg, cvPoint(cvRound(cvmGet(state,0,0)), cvRound(cvmGet(state,1,0))), 4, CV_RGB(0, 255, 200), 2);
       
        // update particles       
        cout << endl << "updating particles" << endl;
        double a[N]; // portion between particles
       
        // define integrated portions of each particles; 0 < a[0] < a[1] < a[2] = 1
        a[0] = w[0];
        for (int n = 1; n < N; n++)
        {
            a[n] = a[n - 1] + w[n];
//            cout << "a" << n << "= " << a[n] << "  ";           
        }
//        cout << "a" << N << "= " << a[N] << "  " << endl;           
       
        for (int n = 0; n < N; n++)
        {   
            // select a particle from the distribution
            int pselected;
            for (int k = 0; k < N; k++)
            {
                if ( uniform_random() < a[k] )               
                {
                    pselected = k;
                    break;
                }
            }
//            cout << "p " << n << " => " << pselected << "  ";       

            // retain the selection 
            cvmSet(pu[n], 0, 0, cvmGet(pp[pselected],0,0)); // x-value
            cvmSet(pu[n], 1, 0, cvmGet(pp[pselected],1,0)); // y-value               
            cvSub(pp[pselected], pb[pselected], vu[n]); // pp - pb -> vu
        }
       
        // updated each particle and its velocity
        for (int n = 0; n < N; n++)
        {
            for (int row = 0; row < 2; row++)
            {
                cvmSet(pb[n], row, 0, cvmGet(pu[n],row,0));
                cvmSet(v[n], row , 0, cvmGet(vu[n],row,0));
            }
        }
        cout << endl << endl ;
       
        cvShowImage("ParticleFilter-3d", iplImg);
        cvWaitKey(1000);   
       
    } // for "t"
   
    cvWaitKey();   
   
    return 0;
}


posted by maetel
2009. 11. 5. 16:12 Computer Vision
Kalman filter 연습 코딩

1차원 간단 예제
// 1-D Kalman filter algorithm exercise
// VIP lab, Sogang University
// 2009-11-05
// ref. Probabilistic Robotics: 42p

#include <iostream>
using namespace std;

int main (int argc, char * const argv[]) {
   
    double groundtruth[] = {1.0, 2.0, 3.5, 5.0, 7.0, 8.0, 10.0};
    double measurement[] = {1.0, 2.1, 3.2, 5.3, 7.4, 8.1, 9.6};
    double transition_noise = 0.1; // covariance of Gaussian noise to control
    double measurement_noise = 0.3; // covariance of Gaussian noise to measurement
   
    double x = 0.0, v = 1.0;    double cov = 0.5;
   
    double x_p, c_p; // prediction of x and cov
    double gain; // Kalman gain
    double x_pre, m;
   
    for (int t=0; t<7; t++)
    {
        // prediction
        x_pre = x;
        x_p = x + v;
        c_p = cov + transition_noise;
        m = measurement[t];
        // update
        gain = c_p / (c_p + measurement_noise);
        x = x_p + gain * (m - x_p);
        cov = ( 1 - gain ) * c_p;
        v = x - x_pre;

        cout << t << endl;
        cout << "estimation  = " << x << endl;
        cout << "measurement = " << measurement[t] << endl;   
        cout << "groundtruth = " << groundtruth[t] << endl;
    }
    return 0;
}

실행 결과:
0
estimation  = 1
measurement = 1
groundtruth = 1
1
estimation  = 2.05
measurement = 2.1
groundtruth = 2
2
estimation  = 3.14545
measurement = 3.2
groundtruth = 3.5
3
estimation  = 4.70763
measurement = 5.3
groundtruth = 5
4
estimation  = 6.76291
measurement = 7.4
groundtruth = 7
5
estimation  = 8.50584
measurement = 8.1
groundtruth = 8
6
estimation  = 9.9669
measurement = 9.6
groundtruth = 10
logout

[Process completed]


2차원 연습
// 2-D Kalman filter algorithm exercise
// lym, VIP lab, Sogang University
// 2009-11-05
// ref. Probabilistic Robotics: 42p

#include <OpenCV/OpenCV.h> // matrix operations

#include <iostream>
#include <iomanip>
using namespace std;

int main (int argc, char * const argv[]) {
    int step = 7;
   
    IplImage *iplImg = cvCreateImage(cvSize(150, 150), 8, 3);
    cvZero(iplImg);
   
    cvNamedWindow("Kalman-2d", 0);
   
    //ground truth of real states
    double groundtruth[] = {10.0, 20.0, 35, 50.0, 70.0, 80.0, 100.0, //x-value
                            10.0, 20.0, 40.0, 55, 65, 80.0, 90.0}; //y-value
    //measurement of observed states
    double measurement_set[] = {10.0, 21, 32, 53, 74, 81, 96,  //x-value
                            10.0, 19, 42, 56, 66, 78, 88};    //y-value
    //covariance of Gaussian noise to control
//    double transition_noise[] = { 0.1, 0.0, 
//                                  0.0, 0.1 }; 
    CvMat* transition_noise = cvCreateMat(2, 2, CV_64FC1); 
    cvmSet(transition_noise, 0, 0, 0.1); //set transition_noise(0,0) to 0.1
    cvmSet(transition_noise, 0, 1, 0.0);
    cvmSet(transition_noise, 1, 0, 0.0);
    cvmSet(transition_noise, 1, 1, 0.1);    
    //covariance of Gaussian noise to measurement
//    double measurement_noise[] = { 0.3, 0.0, 
//                                   0.0, 0.2 };
    CvMat* measurement_noise = cvCreateMat(2, 2, CV_64FC1); 
    cvmSet(measurement_noise, 0, 0, 0.3); //set measurement_noise(0,0) to 0.3
    cvmSet(measurement_noise, 0, 1, 0.0);
    cvmSet(measurement_noise, 1, 0, 0.0);
    cvmSet(measurement_noise, 1, 1, 0.2);        
   
    CvMat* state = cvCreateMat(2, 1, CV_64FC1);    //states to be estimated   
    CvMat* state_p = cvCreateMat(2, 1, CV_64FC1);  //states to be predicted
    CvMat* velocity = cvCreateMat(2, 1, CV_64FC1); //motion controls to change states
    CvMat* measurement = cvCreateMat(2, 1, CV_64FC1); //measurement of states
   
    CvMat* cov = cvCreateMat(2, 2, CV_64FC1);     //covariance to be updated
    CvMat* cov_p = cvCreateMat(2, 2, CV_64FC1); //covariance to be predicted
    CvMat* gain = cvCreateMat(2, 2, CV_64FC1);     //Kalman gain to be updated
   
    // temporary matrices to be used for estimation
    CvMat* Kalman = cvCreateMat(2, 2, CV_64FC1); //
    CvMat* invKalman = cvCreateMat(2, 2, CV_64FC1); //

    CvMat* I = cvCreateMat(2,2,CV_64FC1);
    cvSetIdentity(I); // does not seem to be working properly   
//  cvSetIdentity (I, cvRealScalar (1));   
    // check matrix
    for(int i=0; i<2; i++)
    {
        for(int j=0; j<2; j++)
        {
            cout << cvmGet(I, i, j) << "\t";           
        }
        cout << endl;
    }
 
    // set the initial state
    cvmSet(state, 0, 0, 0.0); //x-value //set state(0,0) to 0.0
    cvmSet(state, 1, 0, 0.0); //y-value //set state(1,0) to 0.0
    // set the initital covariance of state
    cvmSet(cov, 0, 0, 0.5); //set cov(0,0) to 0.5
    cvmSet(cov, 0, 1, 0.0); //set cov(0,1) to 0.0
    cvmSet(cov, 1, 0, 0.0); //set cov(1,0) to 0.0
    cvmSet(cov, 1, 0, 0.4); //set cov(1,1) to 0.4   
    // set the initial control
    cvmSet(velocity, 0, 0, 10.0); //x-direction //set velocity(0,0) to 1.0
    cvmSet(velocity, 1, 0, 10.0); //y-direction //set velocity(0,0) to 1.0
   
    for (int t=0; t<step; t++)
    {
        // retain the current state
        CvMat* state_out = cvCreateMat(2, 1, CV_64FC1); // temporary vector   
        cvmSet(state_out, 0, 0, cvmGet(state,0,0)); 
        cvmSet(state_out, 1, 0, cvmGet(state,1,0));        
        // predict
        cvAdd(state, velocity, state_p); // state + velocity -> state_p
        cvAdd(cov, transition_noise, cov_p); // cov + transition_noise -> cov_p
        // measure
        cvmSet(measurement, 0, 0, measurement_set[t]); //x-value
        cvmSet(measurement, 1, 0, measurement_set[step+t]); //y-value
        // estimate Kalman gain
        cvAdd(cov_p, measurement_noise, Kalman); // cov_p + measure_noise -> Kalman
        cvInvert(Kalman, invKalman); // inv(Kalman) -> invKalman
        cvMatMul(cov_p, invKalman, gain); // cov_p * invKalman -> gain       
        // update the state
        CvMat* err = cvCreateMat(2, 1, CV_64FC1); // temporary vector
        cvSub(measurement, state_p, err); // measurement - state_p -> err
        CvMat* adjust = cvCreateMat(2, 1, CV_64FC1); // temporary vector
        cvMatMul(gain, err, adjust); // gain*err -> adjust
        cvAdd(state_p, adjust, state); // state_p + adjust -> state
        // update the covariance of states
        CvMat* cov_up = cvCreateMat(2, 2, CV_64FC1); // temporary matrix   
        cvSub(I, gain, cov_up); // I - gain -> cov_up       
        cvMatMul(cov_up, cov_p, cov); // cov_up *cov_p -> cov
        // update the control
        cvSub(state, state_out, velocity); // state - state_p -> velocity
       
        // result in colsole
        cout << "step " << t << endl;
        cout << "estimation  = " << cvmGet(state,0,0) << setw(10) << cvmGet(state,1,0) << endl;
        cout << "measurement = " << cvmGet(measurement,0,0) << setw(10) << cvmGet(measurement,1,0) << endl;   
        cout << "groundtruth = " << groundtruth[t] << setw(10) << groundtruth[t+step] << endl;
        // result in image
        cvCircle(iplImg, cvPoint(cvRound(groundtruth[t]), cvRound(groundtruth[t + step])), 3, cvScalarAll(255));
        cvCircle(iplImg, cvPoint(cvRound(cvmGet(measurement,0,0)), cvRound(cvmGet(measurement,1,0))), 2, cvScalar(255, 0, 0));
        cvCircle(iplImg, cvPoint(cvRound(cvmGet(state,0,0)), cvRound(cvmGet(state,1,0))), 2, cvScalar(0, 0, 255));
       
        cvShowImage("Kalman-2d", iplImg);
        cvWaitKey(500);   
   
    }
    cvWaitKey();   
   
    return 0;
}


실행 결과:


step 0
estimation  = 10        10
measurement = 10        10
groundtruth = 10        10
step 1
estimation  = 20.5   19.6263
measurement = 21        19
groundtruth = 20        20
step 2
estimation  = 31.4545   35.5006
measurement = 32        42
groundtruth = 35        40
step 3
estimation  = 47.0763   53.7411
measurement = 53        56
groundtruth = 50        55
step 4
estimation  = 67.6291   69.0154
measurement = 74        66
groundtruth = 70        65
step 5
estimation  = 85.0584   81.1424
measurement = 81        78
groundtruth = 80        80
step 6
estimation  = 99.669    90.634
measurement = 96        88
groundtruth = 100        90



posted by maetel
2009. 8. 19. 00:35 Computer Vision
In defense of the eight-point algorithm
Hartley, R.I.  
Corp. Res. & Dev., Gen. Electr. Co., Schenectady, NY, USA;
This paper appears in: Pattern Analysis and Machine Intelligence, IEEE Transactions on
Publication Date: June 1997
Volume: 19 , Issue: 6
On page(s): 580 - 593






Zhengyou Zhang

'Computer Vision' 카테고리의 다른 글

Jules Bloomenthal & Jon Rokne "Homogeneous Coordinates"  (0) 2009.08.20
Epipolar geometry - Fundamental matrix  (0) 2009.08.19
Five-Point algorithm  (0) 2009.08.18
UNIX references  (0) 2009.08.17
PTAM to be dissected on OS X  (0) 2009.08.17
posted by maetel
2009. 8. 18. 21:29 Computer Vision
Nistér, D. 2004. An Efficient Solution to the Five-Point Relative Pose Problem. IEEE Trans. Pattern Anal. Mach. Intell. 26, 6 (Jun. 2004), 756-777. DOI= http://dx.doi.org/10.1109/TPAMI.2004.17
An efficient solution to the five-point relative pose problem
Nister, D.  
Sarnoff Corp., Princeton, NJ, USA;

This paper appears in: Pattern Analysis and Machine Intelligence, IEEE Transactions on
Publication Date: June 2004
Volume: 26,  Issue: 6
On page(s): 756-770 An Efficient Solution to the Five-Point Relative Pose Problem

David Nist´er
Sarnoff Corporation
Center for Visualization and Virtual Environments and the Computer Science Department of University of Kentucky


H. Stewenius, C. Engels, and D. Niste. Recent developments on direct relative orientation.
ISPRS Journal of Photogrammetry and Remote Sensing, 60:284-294, June 2006.


Calibrated Fivepoint Solver
http://www.vis.uky.edu/~dnister/Executables/RelativeOrientation/


Dhruv Batra, Bart Nabbe, and Martial Hebert. An Alternative Formulation for the Five Point Relative Pose Problem. IEEE Workshop on Motion and Video Computing 2007 (WMVC '07).
http://www.ece.cmu.edu/~dbatra/research/fivept/fivept.html


Five-Point Motion Estimation Made Easy
Hongdong Li and Richard Hartley (RSISE, The Australian National University. Canberra Research Labs, National ICT Australia.)





preview



SfM = structure from motion
http://en.wikipedia.org/wiki/Structure_from_motion

eight-point algorithm
http://en.wikipedia.org/wiki/Eight-point_algorithm
algorithm used in computer vision to estimate the essential matrix or the fundamental matrix related to a stereo camera pair from a set of corresponding image points

Richard Hartley and Andrew Zisserman (2003). Multiple View Geometry in computer vision. Cambridge University Press.
http://www.robots.ox.ac.uk/~vgg/hzbook/
ch.8 - ch.10

Richard I. Hartley (June 1997). "In Defense of the Eight-Point Algorithm". IEEE Transaction on Pattern Recognition and Machine Intelligence 19 (6): 580–593. doi:10.1109/34.601246.

Richard Szeliski, Microsoft Research
Computer Vision: Algorithms and Applications
ch.7 Structure from Motion

Epipolar geometry - Fundamental matrix


'Computer Vision' 카테고리의 다른 글

Epipolar geometry - Fundamental matrix  (0) 2009.08.19
Richard Hartley <In defense of the eight-point algorithm>  (0) 2009.08.19
UNIX references  (0) 2009.08.17
PTAM to be dissected on OS X  (0) 2009.08.17
PTAM test log on Mac OS X  (7) 2009.08.05
posted by maetel
Sahni
Data Structures, Algorithms and Applications in C++, 2nd ed.
: Chapter 16 Graphs

graph data structure

terminology:
vertex, edge, adjacent, incident, degree, cycle, path, connected component, and spanning tree

types:
undirected / directed / weighted

representation:
adjacent matrix / array adjacency lists /  linked adjacency lists

standard graph search methods:
breadth-first / depth-first search

algorithms:



16.1 Definitions

graph
: an ordered pair of finite sets of vertices (or nodes or points) and edges (or arcs or lines)

http://en.wikipedia.org/wiki/Graph_(data_structure)

loop
: self-edge

digraph
: directed graph

network
: weighted undirected graph or digraph


16.2 Applications and More Definitions

example 16.1: path problems

example 16.2: spanning trees

A graph is connected iff there is a path between every pair of vertices in the graph.

cycle
: simiple path with the same start and end vertex

tree
: a connected undirected graph that contains no cycles

spanning tree
: a subgraph of a graph that contains all the vertices of the graph and is a tree

example 16.3: interpreters

bipartite graphs


16.3 Properties

http://en.wikipedia.org/wiki/List_of_graph_theory_topics

in-degree
out-degree

complete digraph


16.4 The ADT graph
16.5 Representation of Unweighted Graphs

adjacency matrix
linked adjacency list
array adjacency list

http://en.wikipedia.org/wiki/Adjacency_matrix

http://en.wikipedia.org/wiki/Adjacency_list
16.6 Representation of Weighted Graphs


cost-adjacency-matrix


16.7 Class Implementations

 
16.8 Graph Search Methods

cp. level-order traversal of a binary tree
http://en.wikipedia.org/wiki/Binary_search_tree#Traversal

cp. pre-order traversal of a binary tree
 
 


 
posted by maetel
2009. 6. 8. 15:17 Computer Vision
To do: Surface shape reconstruction
: Least squares surface fitting




- path integration
- least squares optimization
- Lucas-Kanade algorithm

http://mathworld.wolfram.com/LeastSquaresFitting.html


 /* We want to solve Mz = v in a least squares sense.  The
    solution is M^T M z = M^T v.  We denote M^T M as A and
    M^T v as b, so A z = b. */

 CMatrixSparse<double> A(M.mTm());
    assert(A.isSymmetric());
    CVector<double> r = A*z;  /* r is the "residual error" */
    CVector<double> b(v*M);

 // solve the equation A z = b
    solveQuadratic<double>(A,b,z,300,CGEPSILON);

 // copy the depths back from the vector z into the image depths
    copyDepths(z,zind,depths);


 

template <class T>
double solveQuadratic(const CMatrixSparse<T> & A, const CVector<T> & b,
       CVector<T> & x,int i_max, double epsilon)
{
  //my conjugate gradient solver for .5*x'*A*x -b'*x, based on the
  // tutorial by Jonathan Shewchuk  (or is it +b'*x?)
 
  printf("Performing conjugate gradient optimization\n");

  int numvars = x.Length();
  assert(b.Length() == numvars && A.rows() == numvars &&
  A.columns() == numvars);

  int i =0;

  CVector<T> r = b-A*x;
  CVector<T> d= r;
  double delta_new = r.dot(r);
  double delta_0 = delta_new;

  int numrecompute = (int)floor(sqrt(float(numvars)));
  //int numrecompute = 1;
  printf("numrecompute = %d\n",numrecompute);

  printf("delta_new = %f\n", delta_new);
  while (i < i_max && delta_new > epsilon)//epsilon*epsilon*delta_0)
    {
      printf("Step %d, delta_new = %f      \r",i,delta_new);
     
      CVector<T> q = A*d;
      double alpha = delta_new/d.dot(q);
      x.daxpy(d,alpha); //      x += d*alpha;
      if (i % numrecompute == 0)
 {
   //   printf(" ** recompute\n");
   r = b-A*x;
 }
      else
 r.daxpy(q,-alpha); //  r = r-q*alpha;
      double delta_old = delta_new;
      delta_new = r.dot(r);
      double beta = delta_new/delta_old;
      d = r+d*beta;
      i++;
    }

  return delta_new;
  //  return delta_new <= epsilon;
  //  return !(delta_new > epsilon*epsilon*delta_0);
}










 

'Computer Vision' 카테고리의 다른 글

Reinhard Diestel <Graph Theory>  (0) 2009.06.16
photometric stereo 2009-06-10  (0) 2009.06.10
Photometric stereo 2009-06-05  (0) 2009.06.05
photometric stereo 2009-05-15  (0) 2009.05.15
Criminisi, Reid, Zisserman <Single View Metrology>  (0) 2009.05.06
posted by maetel
2008. 6. 30. 03:38 @GSMC/정문열: Generative Art

'@GSMC > 정문열: Generative Art' 카테고리의 다른 글

[심귀보] 유전자 알고리즘  (0) 2008.07.07
Evolutionary and Swarm Design  (0) 2008.06.27
genetic programming  (0) 2008.06.05
treemaps  (0) 2008.05.29
변수  (0) 2008.05.17
posted by maetel
2007. 11. 28. 16:46 Techne/Greenberg: Creative Code
Part One: Theory of Processing and Computational Art
Chapter 1: Code Art



algorithmic beauty
an apparant mathematical pattern
intuitive math
a common visual algorithmic literacy
randomization




Casey Reas
Ben Fry
John Maeda

computation; the procedure of calculating; determining something mathemetical or logical methods

The technical innocations of the day most often coincide with parallel developments in aesthetics. Early astrological and calendar systems, across many clultures, combined observed empirical data with richly expressive, mythological narratives as a way of interpreting and ultimately preserving and disseminating the data.

complex algorithmic patterns based upon mathemtatical principles

Qualitative notions of aesthetic beauty are combined with analytical systems for structuring visual data.

Giorgio Vasari
Filippo Brunelleschi
Piero della Francesca
Albert Du''rer
Leonardo da Vinci

Design by Numbers

The core expressive element of computing is at the lower level of computation, most accesible through direct programming.




Computer art history

Egyptian Ahmes Papyrus
Babylonian Salamis tablet (counting board)
Roman hand abacus
suan pan (Chinese abacus)
John Napier - logarithms
Edmund Gunter - pickett circular slide rule

Charles Babbage
Ada Lovelace
Analytical  Engine
 
Konrad Zuse
- Z1
John Atanasoff - Mark 1
ENIAC
UNIVAC
Grace M. Hopper


The higher-level symbolic abstraction, nearer to our natural language, allows the coder to think more naturally and thus gain programming literacy more easily.


Jasia Reichardt [The Computer in Art]

There were times in history when scientists, artists, philosophers, engineers, and so forth were all seen as integrated creative practitioners - not divided solely by their perceived utilitarian value in the marketplace.

Admiral Hopper

Mary Flanagan
    http://maryflanagan.com
RAPUNSEL project
    http://mrl.nyu.edu/rapunsel




Code artists

Ben Laposky
www.dam.org/laposky/index.htm
www.atariarchives.org/artist/sec6.php

    William Fetter coined first the term “computer graphics”.
    “oscillons” waveforms
    analog computer


John Whitney Sr.
www.siggraph.org/artdesign/profile/whitney/nowhitney.html
http://en.wikipedia.org/wiki/John_Whitney_(animator)

    the title sequence for Hitchcock's Vertigo
    <Catalog>
    “harmonic progression”
   

Herbert W. Franke
http://en.wikipedia.org/wiki/Herbert_W._Franke
www.dam.org/franke/index.htm
www.zi.biologie.uni-muenchen.de/~franke/

    speleology (the scientific study of caves)
    Ars Electronica Festival
    [Animation with Mathematica]


Lillian Schwartz
www.lillian.com

    Proxina Centauri, a kinetic sculpture
    1968 Machine Exhibition at the Museum of Modern Art (MOMA), New York
    Computerworld Smithsonian awards
    [The Computer Artist's Handbook]


Harold Cohen
www.kurzweilcyberart.com/aaron/hi_cohenbio.html
www.viewingspace.com/genetics_culture/pages_genetics_culture/gc_w05/cohen_h.htm
http://grandtextauto.gatech.edu/2003/06/17/harold-cohen-on-artist-programmers/

    artificial intelligence
    AARON
    Ray Kurzweil  www.kurzweilcyberart.com


Roman Verostko
www.verostko.com

    Gyorgy Kepes
    Hodos
    Jean-Pierre He'bert
    Ken Musgrave
    "Algorists"


George Legardy
www.georgelegrady.com

    Pockets Full of Memories


Mark Napier
http://potatoland.org

    Shredder
    Digital Landfall
    Feed
    riot


John F. Simon Jr.
http://numeral.com

    art appliances
    Plexiglas


John Maeda
www.maedastudio.com
www.media.mit.edu/people/bio_maeda.html
http://weblogs.media.mit.edu/SIMPLICITY/

    E. Rudge
    Nancy Allen
    Aesthetics + Computation Group at MIT
    Muriel Cooper
    Ron MacNeil
    Physical Language Workshop


Mary Flanagan
www.tiltfactor.org

    The Adventures of Josie True
    The RAPUNSEL project: a multiuser 3D game to teach middle school girls computer programming
    Art Journal
    Wide Angle
    Intelligent Agent
    Convergence
    Culture Machine


Casey Reas
http://reas.com

    the relationship between conceptual art and software art
    Jared Tarbell of Levitated
    Robert Hodgin of Flight 404
    William Ngan of Metaphorical.net
    {Software} Structures


Jared Tarbell
http://levitated.net
http://complexification.net


Ben Fry
http://benfry.com

    Altair 8800
    Computational Information Design
    Valence


Charles Csuri
http://old.siggraph.org/artdesign/profile/csuri/

Joshua Davis
www.joshuadavis.com

Andy Deck
http://artcontext.org

Amy Franceschini
www.futurefarmers.com

Ken Goldberg
http://ieor.berkeley.edu/~goldberg/index-flash.html

Jean-Pierre He'bert
http://hebert.kitp.ucsb.edu/
http://jeanpierrehebert.com/

John Klima
www.cityarts.com/

Mario Klingemann
http://www.quasimondo.com/

Ruth Leavitt
http://dam.org/leavitt/index.htm

Golan Levin
www.flong.com/

Manfred Mohr
www.emohr.com/

Colin Moock
www.moock.org/

Ken Musgrave
www.kenmusgrave.com/

Yugo Nakamura
http://yugop.com/

William Ngan
http://metaphorical.net/

Josh Nimoy
www.jtnimoy.net/

Josh On
www.futurefarmers.com/josh/

Robert Penner
www.robertpenner.com/


Ken Perlin
http://mrl.nyu.edu/~perlin/

Keith Peters
http://bit-101.com/

Amit Pitaru
http://pitaru.com/

Paul Prudence
www.transphormetic.com/

Daniel Rozin
http://smoothware.com/danny/

Karsten Schmidt
http://toxi.co.uk/

Manny Tan
www.uncontrol.com/

Martin Wattenberg
www.bewitched.com/

Marius Watz
http://unlekker.net/

Mark Wilson
http://mgwilson.com/


code-helper
zealots-JohnG
st33d
seltar
TomC
mflux
metaphorz
arielm
fjen
blprnt
flight404
shiffman
toxi
fry
REAS

posted by maetel