블로그 이미지
Leeway is... the freedom that someone has to take the action they want to or to change their plans.
maetel

Notice

Recent Post

Recent Comment

Recent Trackback

Archive

calendar

1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31
  • total
  • today
  • yesterday

Category

2010. 1. 22. 00:10 Computer Vision
On the Structure and Solution of the Simultaneous Localisation and Map Building Problem.
Paul Michael Newman.
1999. Ph. D. thesis, Australian Centre for Field Robotics - The University of Sydney


출처: http://cogvis.nada.kth.se/~hic/SLAM/

posted by maetel
2010. 1. 15. 11:55 Computer Vision
1차원 SLAM을 위한 Kalman filter 간단 예제




void cvGEMM(const CvArr* src1, const CvArr* src2, double alpha, const CvArr* src3, double beta, CvArr* dst, int tABC=0)

\texttt{dst} = \texttt{alpha} \, op(\texttt{src1}) \, op(\texttt{src2}) + \texttt{beta} \, op(\texttt{src3}) \quad \text {where $op(X)$ is $X$ or $X^ T$}


define cvMatMulAdd(src1, src2, src3, dst ) cvGEMM(src1, src2, 1, src3, 1, dst, 0 )define cvMatMul(src1, src2, dst ) cvMatMulAdd(src1, src2, 0, dst)




// 1-D SLAM with Kalman Filter
// VIP lab, Sogang University
// 2010-01-14
// ref. Probabilistic Robotics 42p

#include <OpenCV/OpenCV.h> // matrix operations

#include <iostream>
#include <iomanip>
#include <cmath>
using namespace std;

#define num_landmarks 10
#define num_dim (num_landmarks + 2)

#define step 100
#define width 1000
#define height 200

int main (int argc, char * const argv[]) {
   
    srand(time(NULL));
   
    // ground truth of num_landmarks landmarks in the world coordinate
    double landmark[num_landmarks];//    = { 200, 600, 400 }; // x-position
    for( int n = 0; n < num_landmarks; n++ )
    {
        landmark[n] = width * uniform_random();
    }
   
    // set the initial state
    double rob_pos = 25.0; // initial robot position
    double rob_vel = 10.0; // initial robot velocity
    // set the initial covariance of the state
    double rob_pos_cov = 0.01; // covariance of noise to robot position
    double rob_vel_cov = 0.01; // covariance of noise to robot velocity
    double obs_cov = 900; // covarriance of noise to measurement of landmarks
    double xGroundTruth, vGroundTruth;
    xGroundTruth = rob_pos;
    vGroundTruth = rob_vel;
   

   
    IplImage *iplImg = cvCreateImage(cvSize(width, height) , 8, 3);
    cvZero(iplImg);
   
    cvNamedWindow("SLAM-1d", 0);
   
    // H matrix
    int Hrow = num_landmarks;
    int Hcol = num_landmarks + 2;
    CvMat* H = cvCreateMat(Hrow, Hcol, CV_64FC1);
    cvZero(H); // initialize H matrix   
    // set H matrix
    for (int row = 0; row < Hrow; row++)
    {
        cvmSet(H, row, 0, -1.0);
        cvmSet(H, row, row+2, 1.0);
    }   
    displayMatrix(H, "H matrix");
   
    // Q matrix ; covariance of noise to H ; uncertainty of control
    CvMat* Q = cvCreateMat(Hrow, Hrow, CV_64FC1);    
    cvZero(Q); // initialize Q matrix
    // set Q matrix
    for (int row = 0; row < Q->rows; row++)
    {
        cvmSet(Q, row, row, obs_cov);
    }
    displayMatrix(Q, "Q matrix");   
   
    // G matrix // transition
    int Grow = num_landmarks + 2;
    int Gcol = Grow;
    CvMat* G = cvCreateMat(Grow, Gcol, CV_64FC1);
    cvZero(G); // initialize G matrix
    // set G matrix
    cvmSet(G, 0, 0, 1.0); // previous position
    cvmSet(G, 0, 1, 1.0); // velocity   
    for (int row = 1; row < Grow; row++)
    {
        cvmSet(G, row, row, 1.0); // constance of velocity
    }
    displayMatrix(G, "G matrix");
   
    // R matrix ; covariance of noise to H ; uncertainty of observation
    CvMat* R = cvCreateMat(Grow, Grow, CV_64FC1); // 5x5
    cvZero(R); // initialize R matrix
    // set R matrix
    cvmSet(R, 0, 0, rob_pos_cov);
    cvmSet(R, 1, 1, rob_vel_cov);   
    displayMatrix(R, "R matrix");   
   
    CvMat* mu = cvCreateMat(num_dim, 1, CV_64FC1); // state vector to be estimated
    CvMat* rob_ground = cvCreateMat(num_dim, 1, CV_64FC1); // state vector to be estimated
    CvMat* mu_p = cvCreateMat(num_dim, 1, CV_64FC1); // state to be predicted
    CvMat* u = cvCreateMat(1, 1, CV_64FC1); // control vector    
    cvmSet(u, 0, 0, 1.0); // set u(0,0) to 1.0, the constant velocity here
    CvMat* sigma = cvCreateMat(num_dim, num_dim, CV_64FC1); // covariance to be updated
    CvMat* sigma_p = cvCreateMat(num_dim, num_dim, CV_64FC1); // covariance to be updated
    CvMat* z = cvCreateMat(num_landmarks, 1, CV_64FC1); // measurement vector
    CvMat* K = cvCreateMat(num_dim, num_landmarks, CV_64FC1); // K matrix // Kalman gain
   
    CvMat* delta = cvCreateMat(z->rows, 1, CV_64FC1); // measurement noise (ref. 42p: (3.5))   
    CvMat* obs = cvCreateMat(num_landmarks, 1, CV_64FC1); // observation for each landmark
   
    // initialize "mu" vector
    cvmSet(mu, 0, 0, rob_pos + sqrt(rob_pos_cov)*gaussian_random()); // set mu(0,0) to "rob_pos"
    cvmSet(mu, 1, 0, rob_vel + sqrt(rob_vel_cov)*gaussian_random()); // set mu(0,0) to "rob_vel"   
    for(int n = 0; n < num_landmarks; n++)
    {
//        cvmSet(mu, n+2, 0, landmark[n] + sqrt(obs_cov)*gaussian_random());
        cvmSet(mu, n+2, 0, landmark[n]);       
    }   
    displayMatrix(mu, "mu vector");
   
    // initialize "sigma" matrix <-- This is the most critical point in tuning
    cvSetIdentity(sigma, cvRealScalar(obs_cov));       
    displayMatrix(sigma, "sigma matrix");
   
    // matrices to be used in calculation
    CvMat* Hx = cvCreateMat(H->rows, mu->cols, CV_64FC1); // num_landmarksx5 * 5x1
    CvMat* Gt = cvCreateMat(G->cols, G->rows, CV_64FC1); // 5x5
    cvTranspose(G, Gt); // transpose(G) -> Gt   
    CvMat* sigmaGt = cvCreateMat(sigma->rows, G->rows, CV_64FC1); // 5x5 * 5x5
    CvMat* GsigmaGt = cvCreateMat(G->rows, G->rows, CV_64FC1); // 5x5
   
    CvMat* Ht = cvCreateMat(H->cols, H->rows, CV_64FC1); // 5xnum_landmarks
    cvTranspose(H, Ht); // transpose(H) -> Ht
    CvMat* sigmaHt = cvCreateMat(sigma->rows, H->rows, CV_64FC1);    // 5x5 * 5xnum_landmarks
    CvMat* HsigmaHt = cvCreateMat(H->rows, H->rows, CV_64FC1); // num_landmarksxnum_landmarks   
    CvMat* HsigmaHtplusQ = cvCreateMat(H->rows, H->rows, CV_64FC1); // num_landmarksxnum_landmarks   
   
    CvMat* invGain = cvCreateMat(H->rows, H->rows, CV_64FC1); // num_landmarksxnum_landmarks   
    CvMat* sigmapHt = cvCreateMat(sigma_p->rows, Ht->cols, CV_64FC1); // 5x5 * 5xnum_landmarks    
   
    CvMat* Hmu = cvCreateMat(H->rows, mu->cols, CV_64FC1); // num_landmarksx5 * 5x1
    CvMat* miss = cvCreateMat(Hmu->rows, 1, CV_64FC1); // num_landmarksx1
    CvMat* adjust = cvCreateMat(mu->rows, 1, CV_64FC1); // 5x1
   
    CvMat* KH = cvCreateMat(K->rows, H->cols, CV_64FC1); // 5xnum_landmarks * num_landmarksx5
    CvMat* I = cvCreateMat(KH->rows, KH->cols, CV_64FC1); // 5x5 identity matrix
    cvSetIdentity(I);       
    CvMat* change = cvCreateMat(I->rows, I->cols, CV_64FC1); // 5x5

   
    for (int t = 0; t < step; t++)
    {
        cout << endl << "step " << t << endl;       
        cvZero(iplImg);
   
        // predict
        // predict the state (ref. L2, KF algorithm, 42p)
        cvMatMul(G, mu, mu_p); // G * mu -> mu_p
//        displayMatrix(mu_p, "mu_p vector");   
       
        // predict the covariance of the state (ref. L3, KF algorithm, 42p)
        cvMatMul(sigma, Gt, sigmaGt); // sigma * Gt -> sigmaGt
        cvMatMul(G, sigmaGt, GsigmaGt); // G * sigmaGt -> GsigmaGt
        cvAdd(GsigmaGt, R, sigma_p); // GsigmaGt + R -> sigma_p
//        displayMatrix(sigma_p, "sigma_p matrix");
       
        // estimate Kalman gain (ref. L4, KF algorithm, 42p)
        cvMatMul(sigma_p, Ht, sigmaHt); // sigma_p * Ht -> sigmaHt
        cvMatMul(H, sigmaHt, HsigmaHt); // H * sigmaHt -> HsigmaHt
        cvAdd(HsigmaHt, Q, HsigmaHtplusQ); // HsigmaHt + Q -> HsigmaHtplusQ
    //    displayMatrix(HsigmaHtplusQ, "H*sigma*Ht + Q matrix");
       
        cvInvert(HsigmaHtplusQ, invGain); // inv(HsigmaHtplusQ) -> invGain
        displayMatrix(invGain, "invGain matrix");
       
        cvMatMul(sigma_p, Ht, sigmapHt); // sigma_p * Ht -> sigmapHt
        cvMatMul(sigmapHt, invGain, K); // sigmapHt * invGain -> K
    //    displayMatrix(K, "K matrix");       

        // measure
        xGroundTruth += vGroundTruth;
        cvZero(rob_ground);
        cvmSet(rob_ground, 0, 0, xGroundTruth);
        cvmSet(rob_ground, 1, 0, vGroundTruth);
        for( int n = 0; n < num_landmarks; n++ )
        {
            cvmSet(rob_ground, n + 2, 0, landmark[n]);
        }

        for(int n = 0; n < num_landmarks; n++)
        {
            double rn = sqrt(obs_cov) * gaussian_random();
            cvmSet(delta, n, 0, rn);
        }
    //    displayMatrix(delta, "delta vector; measurement noise");
        displayMatrix(rob_ground, "rob_ground");

        cvMatMul(H, rob_ground, Hx); // H * rob_ground -> Hx
        cvAdd(Hx, delta, z); // Hx + delta -> z
        displayMatrix(z, "z vector");
       
        // update the state with Kalman gain (ref. L5, KF algorithm, 42p)
        cvMatMul(H, mu_p, Hmu); // H * mu_p -> Hmu
        cvSub(z, Hmu, miss); // z - Hmu -> miss
        cvMatMul(K, miss, adjust); // K * miss -> adjust
        cvAdd(mu_p, adjust, mu); // mu_p + adjust -> mu
        displayMatrix(mu, "mu vector");
       
        // update the coariance of the state (ref. L6, KF algorith, 42p)
        cvMatMul(K, H, KH); // K * H -> KH
        cvSub(I, KH, change); // I - KH -> change
        cvMatMul(change, sigma_p, sigma); // change * sigma_p -> sigma
        displayMatrix(sigma, "sigma matrix");

        // result in console
        cout << "landmarks  = " << landmark[0] << setw(10) << landmark[1] << setw(10) << landmark[2] << setw(10) << endl;
        cout << "robot position = " << cvmGet(mu, 0, 0) << endl;
//        cout << "measurement = " << cvmGet(z,0,0) << setw(10) << cvmGet(z,1,0) << setw(10) << cvmGet(z,2,0) << endl;   
        for( int n = 0; n < num_landmarks; n++ )
        {
            cvmSet(obs, n, 0, cvmGet(mu,0,0) + cvmGet(z,n,0));
        }
        cout << "observation = " << cvmGet(obs,0,0) << setw(10) << cvmGet(obs,1,0) << setw(10) << cvmGet(obs,2,0) << endl;
        cout<< "estimation = " << cvmGet(mu,2,0) << setw(10) << cvmGet(mu,3,0) << setw(10) << cvmGet(mu,4,0) << endl;

        // result in image
        // ground truth of robot position       
        cvCircle(iplImg, cvPoint(cvRound(cvmGet(rob_ground,0,0)), cvRound(height/2)), 1, cvScalar(100, 0, 255));
        // robot position, purple
        cvCircle(iplImg, cvPoint(cvRound(cvmGet(mu,0,0)), cvRound(height/2)), 3, cvScalar(255, 0, 100));
        // uncertainty of robot position, purple line
        cvLine(iplImg, cvPoint(cvRound(cvmGet(mu,0,0))-sqrt(cvmGet(sigma,0,0)), cvRound(height/2)),
                       cvPoint(cvRound(cvmGet(mu,0,0))+sqrt(cvmGet(sigma,0,0)), cvRound(height/2)), cvScalar(255, 0, 100), 1);
       
        for( int index = 0; index < num_landmarks; index++    )
        { 
            // landmarks, white
            cvCircle(iplImg, cvPoint(cvRound(landmark[index]), cvRound(height/2)), 3, cvScalarAll(255));
            // observation, yellow
//            cvCircle(iplImg, cvPoint(cvRound(cvmGet(obs,index,0)), cvRound(height/2)), 2, cvScalar(0, 200, 255));
            // estimation, green
            cvCircle(iplImg, cvPoint(cvRound(cvmGet(mu,index+2,0)), cvRound(height/2)), 2, cvScalar(50, 255, 0));
            // uncertainty of estimation, green line
            cvLine(iplImg, cvPoint(cvRound(cvmGet(mu,index+2,0))-sqrt(cvmGet(sigma,index+2,0)), cvRound(height/2)),
                   cvPoint(cvRound(cvmGet(mu,index+2,0))+sqrt(cvmGet(sigma,index+2,0)), cvRound(height/2)), cvScalar(50, 255, 0), 1);

        }
   
        cvShowImage("SLAM-1d", iplImg);
        cvWaitKey(0);
       
    }
    cvWaitKey();   
   
    return 0;
}



console:



2차원 SLAM을 위한 Kalman filter 간단 예제

// 2-D SLAM with Kalman Filter
// VIP lab, Sogang University
// 2010-01-18
// ref. Probabilistic Robotics 42p

#include <OpenCV/OpenCV.h> // matrix operations

#include <iostream>
#include <iomanip>
using namespace std;

#define num_landmarks 20
#define num_dim ( 2 * (num_landmarks + 2) )

#define step 200
#define width 800
#define height 600


// uniform random number generator
double uniform_random(void) {
   
    return (double) rand() / (double) RAND_MAX;
   
}

// Gaussian random number generator
double gaussian_random(void) {
   
    static int next_gaussian = 0;
    static double saved_gaussian_value;
   
    double fac, rsq, v1, v2;
   
    if(next_gaussian == 0) {
       
        do {
            v1 = 2.0 * uniform_random() - 1.0;
            v2 = 2.0 * uniform_random() - 1.0;
            rsq = v1 * v1 + v2 * v2;
        }
        while(rsq >= 1.0 || rsq == 0.0);
        fac = sqrt(-2.0 * log(rsq) / rsq);
        saved_gaussian_value = v1 * fac;
        next_gaussian = 1;
        return v2 * fac;
    }
    else {
        next_gaussian = 0;
        return saved_gaussian_value;
    }
}


void displayMatrix(CvMat *mat, char *title = NULL) {
    if(title) cout << title << endl;
    for(int iR = 0; iR < mat->rows; iR++) {
        for(int iC = 0; iC < mat->cols; iC++) {
            printf("%.2f ", cvmGet(mat, iR, iC));
        }
        printf("\n");
    }
    printf("\n");
    return;



void draw2DEllipseFromCovariance
(CvMat* cov, CvPoint* cnt, IplImage *iplImg, CvScalar* curveColor /*= cvScalarAll(255)*/, CvScalar* centerColor /*= cvScalarAll(128) */, int thickness /*= 1*/)
{
   
    if(NULL == cov || 2 != cov->rows || 2 != cov->cols) {
        printf("covariance matrix is not 2x2 !! \n");
        exit(0);
    }
    double eigenvalues[6], eigenvectors[36]; 
    float ev1, ev2, vx, vy, angle;
   
    CvSize axes;
    CvMat evals = cvMat(1, 2, CV_64F, eigenvalues), evecs = cvMat(2, 2, CV_64F, eigenvectors);
   
    cvSVD(cov, &evals, &evecs, 0, CV_SVD_MODIFY_A + CV_SVD_U_T ); 
   
    ev1 = cvmGet(&evals, 0, 0);        ev2 = cvmGet(&evals, 0, 1);
   
    if( ev1 < 0 && ev2 < 0 ) {
        ev1 = -ev1;
        ev2 = -ev2;
    }
    if( ev1 < ev2 ) {
        float tmp = ev1;
        ev1 = ev2;
        ev2 = tmp;
    }
    if( ev1 <= 0 || ev2 <= 0 ) {
        printf("COV Eigenvalue is negativ or zero(!)\n");
        exit(0);
    }
   
    // calc angle 
    angle = (float)(180 - atan2(eigenvectors[2], eigenvectors[3]) * 180 / CV_PI); 
   
    axes = cvSize(cvRound(sqrt(ev1)), cvRound(sqrt(ev2)));
    (float)(180 - atan2(eigenvectors[2], eigenvectors[3]) * 180 / CV_PI);
    cvEllipse(iplImg, *cnt, axes, angle, 0, 360, *curveColor, thickness);
   
    cvLine(iplImg, cvPoint(cnt->x - 1, cnt->y - 1), cvPoint(cnt->x + 2, cnt->y + 1), *centerColor, 1);
    cvLine(iplImg, cvPoint(cnt->x - 1, cnt->y + 1), cvPoint(cnt->x + 2, cnt->y - 1), *centerColor, 1);
   
}


int main (int argc, char * const argv[]) {

    srand(time(NULL));
   
    // set the initial state
    double rob_x = width * 0.1; // robot's initial x-position
    double rob_y = height * 0.4; // robot's initial y-position   
    double rob_vx = 10.0; // robot's initial x-velocity
    double rob_vy = 10.0; // robot's initial y-velocity   
   
    // set the initial covariance of the state uncertainty
    double rob_px_cov = 0.01; // covariance of noise to robot's x-position
    double rob_py_cov = 0.01; // covariance of noise to robot's y-position   
    double rob_vx_cov = 0.01; // covariance of noise to robot's x-velocity
    double rob_vy_cov = 0.01; // covariance of noise to robot's y-velocity   
   
    // set the initial covariance of the measurement noise
    double obs_x_cov = 900; // covarriance of noise to x-measurement of landmarks
    double obs_y_cov = 900; // covarriance of noise to y-measurement of landmarks
   
    // ground truth of state
    double xGroundTruth = rob_x;
    double yGroundTruth = rob_y;
    double vxGroundTruth = rob_vx;
    double vyGroundTruth = rob_vy;
   
    // ground truth of num_landmarks landmarks in the world coordinate
    double landmark[2*num_landmarks];  
    for( int n = 0; n < num_landmarks; n++ )
    {
        landmark[2*n] = width * uniform_random();
        landmark[2*n+1] = height * uniform_random();
    }   
   
    IplImage *iplImg = cvCreateImage(cvSize(width, height) , 8, 3);
    cvZero(iplImg);
   
    cvNamedWindow("SLAM-2d");
   
    // H matrix, measurement matrix
    CvMat* H = cvCreateMat(2*num_landmarks, num_dim, CV_64FC1);
    cvZero(H); // initialize H matrix   
    // set H matrix
    for (int r = 0; r < num_landmarks; r++)
    {
        cvmSet(H, 2*r, 0, -1.0); // robot's x-position
        cvmSet(H, 2*r, 2*r+4, 1.0); // landmark's x-position
        cvmSet(H, 2*r+1, 1, -1.0); // robot's y-position
        cvmSet(H, 2*r+1, 2*r+5, 1.0); // landmarks's y-position        
    }   
    displayMatrix(H, "H matrix");
   
    // Q matrix ; covariance of noise to H; uncertainty of control
    CvMat* Q = cvCreateMat(2*num_landmarks, 2*num_landmarks, CV_64FC1);    
    cvZero(Q); // initialize Q matrix
    // set Q matrix
    for (int row = 0; row < Q->rows; row++)
    {
        cvmSet(Q, row, row, obs_x_cov);
    }
    displayMatrix(Q, "Q matrix");   
   
    // G matrix // transition
    CvMat* G = cvCreateMat(num_dim, num_dim, CV_64FC1);
    cvZero(G); // initialize G matrix
    // set G matrix
    cvmSet(G, 0, 0, 1.0); // previous x-position
    cvmSet(G, 0, 2, 1.0); // x-velocity
    cvmSet(G, 1, 1, 1.0); // previous y-position
    cvmSet(G, 1, 3, 1.0); // y-velocity   
    for (int row = 2; row < G->rows; row++)
    {
        cvmSet(G, row, row, 1.0); // constance of velocity
    }
    displayMatrix(G, "G matrix");
   
    // R matrix ; covariance of noise to G; uncertainty of observation
    CvMat* R = cvCreateMat(num_dim, num_dim, CV_64FC1);
    cvZero(R); // initialize R matrix
    // set R matrix
    cvmSet(R, 0, 0, rob_px_cov);
    cvmSet(R, 1, 1, rob_py_cov);
    cvmSet(R, 2, 2, rob_vx_cov);
    cvmSet(R, 3, 3, rob_vy_cov);   
    displayMatrix(R, "R matrix");   
       
   
    CvMat* rob_ground = cvCreateMat(num_dim, 1, CV_64FC1); // ground truth of state        
    CvMat* mu = cvCreateMat(num_dim, 1, CV_64FC1); // state vector to be estimated
    CvMat* mu_p = cvCreateMat(num_dim, 1, CV_64FC1); // state vector to be predicted

    CvMat* sigma = cvCreateMat(num_dim, num_dim, CV_64FC1); // covariance to be updated
    CvMat* sigma_p = cvCreateMat(num_dim, num_dim, CV_64FC1); // covariance to be updated
    CvMat* z = cvCreateMat(2*num_landmarks, 1, CV_64FC1); // measurement vector
    CvMat* K = cvCreateMat(num_dim, 2*num_landmarks, CV_64FC1); // K matrix // Kalman gain
   
    CvMat* delta = cvCreateMat(z->rows, 1, CV_64FC1); // measurement noise (ref. 42p: (3.5))  
    CvMat* obs = cvCreateMat(2*num_landmarks, 1, CV_64FC1); // observation for each landmark

    // initialize "mu" vector
    cvmSet(mu, 0, 0, rob_x); // set mu(0,0) to "rob_x"
    cvmSet(mu, 1, 0, rob_y); // set mu(1,0) to "rob_y"
    cvmSet(mu, 2, 0, rob_vx); // set mu(2,0) to "rob_vx"
    cvmSet(mu, 3, 0, rob_vy); // set mu(3,0) to "rob_vy"
    for (int n = 0; n < 2*num_landmarks; n++)
    {
        cvmSet(mu, n+4, 0, landmark[n]); // set mu(4,0) to "landmark[0]", ...
    }
    displayMatrix(mu, "mu vector");
   
/*    // initialize "sigma" matrix
    cvmSet(sigma, 0, 0, rob_px_cov);
    cvmSet(sigma, 1, 1, rob_py_cov);
    cvmSet(sigma, 2, 2, rob_vx_cov);
    cvmSet(sigma, 3, 3, rob_vy_cov);
    for (int r = 4; r < sigma->rows; r=r*2)
    {
        cvmSet(sigma, r, r, obs_x_cov);
        cvmSet(sigma, r+1, r+1, obs_y_cov);        
    }
*/    // initialize "sigma" matrix <-- This is the most critical point in tuning
    cvSetIdentity(sigma, cvRealScalar(obs_x_cov));       
    displayMatrix(sigma, "sigma matrix");
   
    // matrices to be used in calculation
    CvMat* Hx = cvCreateMat(H->rows, mu->cols, CV_64FC1);
    CvMat* Gt = cvCreateMat(G->cols, G->rows, CV_64FC1);
    cvTranspose(G, Gt); // transpose(G) -> Gt
    CvMat* sigmaGt = cvCreateMat(sigma->rows, G->rows, CV_64FC1);
    CvMat* GsigmaGt = cvCreateMat(G->rows, G->rows, CV_64FC1); // 10x10
   
    CvMat* Ht = cvCreateMat(H->cols, H->rows, CV_64FC1); // 10x6
    cvTranspose(H, Ht); // transpose(H) -> Ht       
    CvMat* sigmaHt = cvCreateMat(sigma->rows, H->rows, CV_64FC1);    // 10x10 * 10x6
    CvMat* HsigmaHt = cvCreateMat(H->rows, H->rows, CV_64FC1); // 6x6   
    CvMat* HsigmaHtplusQ = cvCreateMat(H->rows, H->rows, CV_64FC1); // 6x6   
   
    CvMat* invGain = cvCreateMat(H->rows, H->rows, CV_64FC1); // 6x6   
    CvMat* sigmapHt = cvCreateMat(sigma_p->rows, Ht->cols, CV_64FC1); // 10x10 * 10x6    
   
    CvMat* Hmu = cvCreateMat(H->rows, mu->cols, CV_64FC1); // 6x10 * 10x1
    CvMat* miss = cvCreateMat(Hmu->rows, 1, CV_64FC1); // 6x1
    CvMat* adjust = cvCreateMat(mu->rows, 1, CV_64FC1); // 10x1
   
    CvMat* KH = cvCreateMat(K->rows, H->cols, CV_64FC1); // 10x6 * 6x10
    CvMat* I = cvCreateMat(KH->rows, KH->cols, CV_64FC1); // 10x10 identity matrix
    cvSetIdentity(I); // does not seem to be working properly      
    CvMat* change = cvCreateMat(I->rows, I->cols, CV_64FC1); // 10x10
   
    CvPoint trajectory[step];
    CvPoint robot_ground[step];
   
    int frame = int(0.9*step);
   
    for (int t = 0; t < step; t++)
    {
        cout << endl << "step " << t << endl;      
        cvZero(iplImg);
       
        // predict
        // predict the state (ref. L2, KF algorithm, 42p)
        cvMatMul(G, mu, mu_p); // G * mu -> mu_p
       
        // predict the covariance of the state (ref. L3, EKF algorithm, 42p)
        cvMatMul(sigma, Gt, sigmaGt); // sigma * Gt -> sigmaGt
        cvMatMul(G, sigmaGt, GsigmaGt); // G * sigmaGt -> GsigmaGt
        cvAdd(GsigmaGt, R, sigma_p); // GsigmaGt + R -> sigma_p
               
        // estimate Kalman gain (ref. L4, EKF algorithm, 42p)   
        cvMatMul(sigma_p, Ht, sigmaHt); // sigma_p * Ht -> sigmaHt
        cvMatMul(H, sigmaHt, HsigmaHt); // H * sigmaHt -> HsigmaHt
        cvAdd(HsigmaHt, Q, HsigmaHtplusQ); // HsigmaHt + Q -> HsigmaHtplusQ
        cvInvert(HsigmaHtplusQ, invGain); // inv(HsigmaHtplusQ) -> invGain
        cvMatMul(sigma_p, Ht, sigmapHt); // sigma_p * Ht -> sigmapHt
        cvMatMul(sigmapHt, invGain, K); // sigmapHt * invGain -> K
        displayMatrix(K, "K matrix");  
   
       
        // measure
        // set ground truths
        if ( xGroundTruth >= width || xGroundTruth <= 0)
        {
            vxGroundTruth = - vxGroundTruth;
        }   
        if ( yGroundTruth >= height || yGroundTruth <= 0 )
        {
            vyGroundTruth = - vyGroundTruth;
        }   
        xGroundTruth += vxGroundTruth;
        yGroundTruth += vyGroundTruth;
        cvZero(rob_ground);
        cvmSet(rob_ground, 0, 0, xGroundTruth);
        cvmSet(rob_ground, 1, 0, yGroundTruth);
        cvmSet(rob_ground, 2, 0, vxGroundTruth);
        cvmSet(rob_ground, 3, 0, vyGroundTruth);
       
        robot_ground[t] = cvPoint(cvRound(xGroundTruth),cvRound(yGroundTruth)); 
       
        for (int dim = 0; dim < 2*num_landmarks; dim++)
        {
            cvmSet(rob_ground, dim+4, 0, landmark[dim]);
        }
        displayMatrix(rob_ground, "rob_ground");
        // set measurement noise
        for(int n = 0; n < num_landmarks; n++)
        {
            double rn_x = sqrt(obs_x_cov) * gaussian_random();
            double rn_y = sqrt(obs_y_cov) * gaussian_random();           
            cvmSet(delta, 2*n, 0, rn_x);
            cvmSet(delta, 2*n+1, 0, rn_y);
           
        }
//      displayMatrix(delta, "delta vector; measurement noise");
       
        // define z, measurement, vector
        cvMatMul(H, rob_ground, Hx); // H * rob_ground -> Hx
        cvAdd(Hx, delta, z); // Hx + delta -> z
        displayMatrix(z, "z vector");
       
        // observation relative to robot's position
        for( int n = 0; n < 2*num_landmarks; n++ )
        {
            cvmSet(obs, n, 0, cvmGet(mu,0,0) + cvmGet(z,n,0));
        }
       
        // update the state with Kalman gain (ref. L5, EKF algorithm, 42p)
        cvMatMul(H, mu, Hmu); // H * mu -> Hmu
        cvSub(z, Hmu, miss); // z - Hmu -> miss
        cvMatMul(K, miss, adjust); // K * miss -> adjust
        cvAdd(mu_p, adjust, mu); // mu_p + adjust -> mu
        displayMatrix(mu, "mu vector");
       
        trajectory[t] = cvPoint(cvRound(cvmGet(mu,0,0)),cvRound(cvmGet(mu,1,0)));
       
       
        // update the covariance of the state
        cvMatMul(K, H, KH); // K * H -> KH
        cvSub(I, KH, change); // I - KH -> change
        cvMatMul(change, sigma_p, sigma); // change * sigma_p -> sigma
        displayMatrix(sigma, "sigma matrix");
       
        // result in console
        cout << "robot position: " << "px = " << cvmGet(mu, 0, 0) << "  py = " << cvmGet(mu, 1, 0) << endl;
        for (int n = 0; n < num_landmarks; n++)
        {
            cout << setw(10) << "landmark" << n+1 << " (" << landmark[2*n] << ", " << landmark[2*n+1] << ") "
            << setw(10) << "observation" << n+1 << " (" << cvmGet(obs,2*n,0) << ", " << cvmGet(obs,2*n+1,0) << ") "
            << setw(10) << "estimation" << n+1 << " (" << cvmGet(mu,4+2*n,0) << ", " << cvmGet(mu,4+2*n+1,0) << ") " << endl;
        }       
       
       
        CvMat* local_uncertain = cvCreateMat(2, 2, CV_64FC1);
        CvMat* map_uncertain [num_landmarks];
        for (int n = 0; n < num_landmarks; n++)
        {
            map_uncertain [n] = cvCreateMat(2, 2, CV_64FC1);
        }
        cvmSet(local_uncertain, 0, 0, cvmGet(sigma,0,0));
        cvmSet(local_uncertain, 0, 1, cvmGet(sigma,0,1));
        cvmSet(local_uncertain, 1, 0, cvmGet(sigma,1,0));
        cvmSet(local_uncertain, 1, 1, cvmGet(sigma,1,1));
       
        displayMatrix(local_uncertain, "local_uncertain");       
       
        for (int n = 0; n < num_landmarks; n++)
        {
            cvmSet(map_uncertain[n], 0, 0, cvmGet(sigma,n+4,n+4));
            cvmSet(map_uncertain[n], 0, 1, cvmGet(sigma,n+4,n+5));
            cvmSet(map_uncertain[n], 1, 0, cvmGet(sigma,n+5,n+4));
            cvmSet(map_uncertain[n], 1, 1, cvmGet(sigma,n+5,n+5));

            displayMatrix(map_uncertain[n], "map_uncertain");
        } 
       
        // result in image
        // ground truth of robot position, red       
        cvCircle(iplImg, cvPoint(cvRound(cvmGet(rob_ground,0,0)), cvRound(cvmGet(rob_ground,1,0))), 2, cvScalar(60, 0, 255), 2);
        // estimated robot position, purple
        cvCircle(iplImg, cvPoint(cvRound(cvmGet(mu,0,0)), cvRound(cvmGet(mu,1,0))), 5, cvScalar(255, 0, 100), 2);
        // uncertainty of robot position, purple line
//        cvLine(iplImg, cvPoint(cvRound(cvmGet(mu,0,0))-sqrt(cvmGet(sigma,0,0)), cvRound(height/2)),
//               cvPoint(cvRound(cvmGet(mu,0,0))+sqrt(cvmGet(sigma,0,0)), cvRound(height/2)), cvScalar(255, 0, 100), 1);
   
        CvPoint local = cvPoint(cvRound(cvmGet(mu,0,0)),cvRound(cvmGet(mu,1,0)));
        CvScalar local_center_color = cvScalar(255, 0, 100);
        CvScalar local_curve_color = cvScalarAll(128);
       
        draw2DEllipseFromCovariance(local_uncertain, &local, iplImg, &local_center_color, &local_curve_color, 1);
       
       
        for( int index = 0; index < num_landmarks; index++    )
        { 
            // landmarks, white
            cvCircle(iplImg, cvPoint(cvRound(landmark[2*index]), cvRound(landmark[2*index+1])), 4, cvScalarAll(255), 2);
            // observation, yellow
//            cvCircle(iplImg, cvPoint(cvRound(cvmGet(obs,2*index,0)), cvRound(cvmGet(obs,2*index+1,0))), 4, cvScalar(0, 200, 255), 1);
            // estimation, green
            cvCircle(iplImg, cvPoint(cvRound(cvmGet(mu,4+2*index,0)), cvRound(cvmGet(mu,4+2*index+1,0))), 3, cvScalar(50, 255, 0), 1);
            // uncertainty of estimation, green line
//            cvLine(iplImg, cvPoint(cvRound(cvmGet(mu,index+2,0))-sqrt(cvmGet(sigma,index+2,0)), cvRound(height/2)),
//                   cvPoint(cvRound(cvmGet(mu,index+2,0))+sqrt(cvmGet(sigma,index+2,0)), cvRound(height/2)), cvScalar(50, 255, 0), 1);
       
            CvPoint observed = cvPoint(cvRound(cvmGet(mu,4+2*index,0)), cvRound(cvmGet(mu,4+2*index+1,0)));
            CvScalar observed_center_color = cvScalar(50, 255, 0);
            CvScalar observed_curve_color = cvScalar(50, 255, 0);
           
            draw2DEllipseFromCovariance(map_uncertain[index], &observed, iplImg, &observed_center_color, &observed_curve_color, 1);    
        }
       
        for( int p = 1; p <= t; p++ )
        {
            cvLine(iplImg, robot_ground[p-1], robot_ground[p], cvScalar(60, 0, 255), 1);           
            cvLine(iplImg, trajectory[p-1], trajectory[p], cvScalar(255, 0, 100), 1);
        }

        if ( t == frame )
        {
            cvSaveImage("2D SLAM test.bmp", iplImg);
        }
       
        cvShowImage("SLAM-2d", iplImg);
        cvWaitKey(100);   
       
    }
    cout << endl << endl << "process finished" << endl;
    cvWaitKey();   
   
    return 0;
}












posted by maetel
2009. 11. 30. 16:06 Computer Vision
http://bayesclasses.sourceforge.net/

내용은 다음과 같다.
http://bayesclasses.sourceforge.net/Bayesian%20Filtering%20Classes.html


test log 2009-12-02


0. 랩 공용 노트북 사양
OS: 32bit Windows Vista Home Basic K Service Pack 1
processor: Intel(R) Core(TM)2 Duo CPU T5750 @ 2.00GHz 2.00 GHz
RAM: 2.00GM

Microsoft Visual Studio 2005 버전 8.050727.867 (vsvista.050727-8600
Microsoft.Net Framework 버전 2.0.50727 서비스 팩



1. 다운로드
1-1. Boost 다운로드 및 설치
http://www.boost.org/에서 직접 다운로드하여 설치할 수도 있으나 복잡하다고 한다. 
http://www.boostpro.com/에서 BoostPro 1.40.0 Installer를  다운로드 후 실행하여
자동으로 설치 (VS 8버전에 맞는 모든 옵션 선택)

1-2. Bayes++  다운로드
bf-C++source-2003.8-6.zip   141.5 KB 2006-10-04
Bayes++.sln 파일 실행, Visual Studio 자동 로딩, 버전 문제로 백업 후 업그레이드

1-3. Bayes++ solution에 path 추가
VS 메뉴 > 도구 > 옵션 >


2. 디버깅



posted by maetel
2009. 11. 17. 15:48 Computer Vision
Kalman Filtering
http://academic.csuohio.edu/simond/courses/eec644/kalman.pdf

72-79p, Embedded Systems Programming f e a tur e, JUNE 2001
http://www.embedded.com/9900168?_requestid=49635

The Kalman filter update equations in C
http://www.embedded.com/9900168?pgno=2
matrix algebra reference
ftp://ftp.embedded.com/pub/2001/simon06


Dan Simon 
http://academic.csuohio.edu/simond/


Kalman filter
: estimates system states that can only be observed indirectly or inaccurately by the system itself.
: estimates the variables of a wide range of processes.
: estimates the states of a linear system.
: minimizes the variance of the estimation error

Linear system
x: state of the system
u: known input to the system
y: measured output
w: process noise
z: measurement noise


http://wiki.answers.com/Q/What_is_a_feedback_system
A feedback system, in general engineering terms, is a system whose output if fed back to the input, and depending on the output, your input is adjusted so as to reach a steady-state. In colloquial language, you adjust your input based on the output of your system so as to achieve a certain end, like minimizing disturbance, cancelling echo (in a speech system) and so on.


Criteria of an Estimator
1) The expected value of the estimate should be equal to the expected value of the state.
2) The estimator should be with the smallest possible error variance.


Requirement of Kalman filter
1) The average value of w is zero and average value of z is zero.
2) No correlation exists between w and z. w_k and z_k are independent random variables.


Kalman filter equations

K matrix: Kalman gain
P matrix: estimation error covariance



http://en.wikipedia.org/wiki/Three_sigma_rule
In statistics, the 68-95-99.7 rule, or three-sigma rule, or empirical rule, states that for a normal distribution, nearly all values lie within 3 standard deviations of the mean.


"steady state Kalman filter"
 - K matrix & P matrix are constant

"extended Kalman filter"
: an extension of linear Kalman filter theory to nonlinear systems

"Kalman smoother"
: to estimate the state as a function of time so to reconstruct the trajectory after the fact


H infinity filter
=> correlated noise problem
=> unknown noise covariances problem

http://academic.csuohio.edu/simond/estimation/


Rudolph Kalman

Peter Swerling, 1958

Karl Gauss's method of least squares, 1795

spacecraft navigation for the Apollo space program


> applications
all forms of navigation (aerospace, land, and marine)
nuclear power plant instrumentation
demographic modeling
manufacturing
the detection of underground radioactivity
fuzzy logic and neural network training



Gelb, A. Applied Optimal Estimation. Cambridge, MA: MIT Press, 1974.

Anderson, B. and J. Moore. Optimal Filtering. Englewood Cliffs, NJ: Prentice-Hall, 1979.

Grewal, M. and A. Andrews. Kalman Filtering Theory and Practice. Englewood Cliffs, NJ: Prentice-Hall, 1993.

Sorenson, H. Kalman Filtering: Theory and Application. Los Alamitos, CA: IEEE Press, 1985.

Peter Joseph’s Web site @http://ourworld.compuserve.com/homepages/PDJoseph/

posted by maetel
2009. 11. 5. 16:12 Computer Vision
Kalman filter 연습 코딩

1차원 간단 예제
// 1-D Kalman filter algorithm exercise
// VIP lab, Sogang University
// 2009-11-05
// ref. Probabilistic Robotics: 42p

#include <iostream>
using namespace std;

int main (int argc, char * const argv[]) {
   
    double groundtruth[] = {1.0, 2.0, 3.5, 5.0, 7.0, 8.0, 10.0};
    double measurement[] = {1.0, 2.1, 3.2, 5.3, 7.4, 8.1, 9.6};
    double transition_noise = 0.1; // covariance of Gaussian noise to control
    double measurement_noise = 0.3; // covariance of Gaussian noise to measurement
   
    double x = 0.0, v = 1.0;    double cov = 0.5;
   
    double x_p, c_p; // prediction of x and cov
    double gain; // Kalman gain
    double x_pre, m;
   
    for (int t=0; t<7; t++)
    {
        // prediction
        x_pre = x;
        x_p = x + v;
        c_p = cov + transition_noise;
        m = measurement[t];
        // update
        gain = c_p / (c_p + measurement_noise);
        x = x_p + gain * (m - x_p);
        cov = ( 1 - gain ) * c_p;
        v = x - x_pre;

        cout << t << endl;
        cout << "estimation  = " << x << endl;
        cout << "measurement = " << measurement[t] << endl;   
        cout << "groundtruth = " << groundtruth[t] << endl;
    }
    return 0;
}

실행 결과:
0
estimation  = 1
measurement = 1
groundtruth = 1
1
estimation  = 2.05
measurement = 2.1
groundtruth = 2
2
estimation  = 3.14545
measurement = 3.2
groundtruth = 3.5
3
estimation  = 4.70763
measurement = 5.3
groundtruth = 5
4
estimation  = 6.76291
measurement = 7.4
groundtruth = 7
5
estimation  = 8.50584
measurement = 8.1
groundtruth = 8
6
estimation  = 9.9669
measurement = 9.6
groundtruth = 10
logout

[Process completed]


2차원 연습
// 2-D Kalman filter algorithm exercise
// lym, VIP lab, Sogang University
// 2009-11-05
// ref. Probabilistic Robotics: 42p

#include <OpenCV/OpenCV.h> // matrix operations

#include <iostream>
#include <iomanip>
using namespace std;

int main (int argc, char * const argv[]) {
    int step = 7;
   
    IplImage *iplImg = cvCreateImage(cvSize(150, 150), 8, 3);
    cvZero(iplImg);
   
    cvNamedWindow("Kalman-2d", 0);
   
    //ground truth of real states
    double groundtruth[] = {10.0, 20.0, 35, 50.0, 70.0, 80.0, 100.0, //x-value
                            10.0, 20.0, 40.0, 55, 65, 80.0, 90.0}; //y-value
    //measurement of observed states
    double measurement_set[] = {10.0, 21, 32, 53, 74, 81, 96,  //x-value
                            10.0, 19, 42, 56, 66, 78, 88};    //y-value
    //covariance of Gaussian noise to control
//    double transition_noise[] = { 0.1, 0.0, 
//                                  0.0, 0.1 }; 
    CvMat* transition_noise = cvCreateMat(2, 2, CV_64FC1); 
    cvmSet(transition_noise, 0, 0, 0.1); //set transition_noise(0,0) to 0.1
    cvmSet(transition_noise, 0, 1, 0.0);
    cvmSet(transition_noise, 1, 0, 0.0);
    cvmSet(transition_noise, 1, 1, 0.1);    
    //covariance of Gaussian noise to measurement
//    double measurement_noise[] = { 0.3, 0.0, 
//                                   0.0, 0.2 };
    CvMat* measurement_noise = cvCreateMat(2, 2, CV_64FC1); 
    cvmSet(measurement_noise, 0, 0, 0.3); //set measurement_noise(0,0) to 0.3
    cvmSet(measurement_noise, 0, 1, 0.0);
    cvmSet(measurement_noise, 1, 0, 0.0);
    cvmSet(measurement_noise, 1, 1, 0.2);        
   
    CvMat* state = cvCreateMat(2, 1, CV_64FC1);    //states to be estimated   
    CvMat* state_p = cvCreateMat(2, 1, CV_64FC1);  //states to be predicted
    CvMat* velocity = cvCreateMat(2, 1, CV_64FC1); //motion controls to change states
    CvMat* measurement = cvCreateMat(2, 1, CV_64FC1); //measurement of states
   
    CvMat* cov = cvCreateMat(2, 2, CV_64FC1);     //covariance to be updated
    CvMat* cov_p = cvCreateMat(2, 2, CV_64FC1); //covariance to be predicted
    CvMat* gain = cvCreateMat(2, 2, CV_64FC1);     //Kalman gain to be updated
   
    // temporary matrices to be used for estimation
    CvMat* Kalman = cvCreateMat(2, 2, CV_64FC1); //
    CvMat* invKalman = cvCreateMat(2, 2, CV_64FC1); //

    CvMat* I = cvCreateMat(2,2,CV_64FC1);
    cvSetIdentity(I); // does not seem to be working properly   
//  cvSetIdentity (I, cvRealScalar (1));   
    // check matrix
    for(int i=0; i<2; i++)
    {
        for(int j=0; j<2; j++)
        {
            cout << cvmGet(I, i, j) << "\t";           
        }
        cout << endl;
    }
 
    // set the initial state
    cvmSet(state, 0, 0, 0.0); //x-value //set state(0,0) to 0.0
    cvmSet(state, 1, 0, 0.0); //y-value //set state(1,0) to 0.0
    // set the initital covariance of state
    cvmSet(cov, 0, 0, 0.5); //set cov(0,0) to 0.5
    cvmSet(cov, 0, 1, 0.0); //set cov(0,1) to 0.0
    cvmSet(cov, 1, 0, 0.0); //set cov(1,0) to 0.0
    cvmSet(cov, 1, 0, 0.4); //set cov(1,1) to 0.4   
    // set the initial control
    cvmSet(velocity, 0, 0, 10.0); //x-direction //set velocity(0,0) to 1.0
    cvmSet(velocity, 1, 0, 10.0); //y-direction //set velocity(0,0) to 1.0
   
    for (int t=0; t<step; t++)
    {
        // retain the current state
        CvMat* state_out = cvCreateMat(2, 1, CV_64FC1); // temporary vector   
        cvmSet(state_out, 0, 0, cvmGet(state,0,0)); 
        cvmSet(state_out, 1, 0, cvmGet(state,1,0));        
        // predict
        cvAdd(state, velocity, state_p); // state + velocity -> state_p
        cvAdd(cov, transition_noise, cov_p); // cov + transition_noise -> cov_p
        // measure
        cvmSet(measurement, 0, 0, measurement_set[t]); //x-value
        cvmSet(measurement, 1, 0, measurement_set[step+t]); //y-value
        // estimate Kalman gain
        cvAdd(cov_p, measurement_noise, Kalman); // cov_p + measure_noise -> Kalman
        cvInvert(Kalman, invKalman); // inv(Kalman) -> invKalman
        cvMatMul(cov_p, invKalman, gain); // cov_p * invKalman -> gain       
        // update the state
        CvMat* err = cvCreateMat(2, 1, CV_64FC1); // temporary vector
        cvSub(measurement, state_p, err); // measurement - state_p -> err
        CvMat* adjust = cvCreateMat(2, 1, CV_64FC1); // temporary vector
        cvMatMul(gain, err, adjust); // gain*err -> adjust
        cvAdd(state_p, adjust, state); // state_p + adjust -> state
        // update the covariance of states
        CvMat* cov_up = cvCreateMat(2, 2, CV_64FC1); // temporary matrix   
        cvSub(I, gain, cov_up); // I - gain -> cov_up       
        cvMatMul(cov_up, cov_p, cov); // cov_up *cov_p -> cov
        // update the control
        cvSub(state, state_out, velocity); // state - state_p -> velocity
       
        // result in colsole
        cout << "step " << t << endl;
        cout << "estimation  = " << cvmGet(state,0,0) << setw(10) << cvmGet(state,1,0) << endl;
        cout << "measurement = " << cvmGet(measurement,0,0) << setw(10) << cvmGet(measurement,1,0) << endl;   
        cout << "groundtruth = " << groundtruth[t] << setw(10) << groundtruth[t+step] << endl;
        // result in image
        cvCircle(iplImg, cvPoint(cvRound(groundtruth[t]), cvRound(groundtruth[t + step])), 3, cvScalarAll(255));
        cvCircle(iplImg, cvPoint(cvRound(cvmGet(measurement,0,0)), cvRound(cvmGet(measurement,1,0))), 2, cvScalar(255, 0, 0));
        cvCircle(iplImg, cvPoint(cvRound(cvmGet(state,0,0)), cvRound(cvmGet(state,1,0))), 2, cvScalar(0, 0, 255));
       
        cvShowImage("Kalman-2d", iplImg);
        cvWaitKey(500);   
   
    }
    cvWaitKey();   
   
    return 0;
}


실행 결과:


step 0
estimation  = 10        10
measurement = 10        10
groundtruth = 10        10
step 1
estimation  = 20.5   19.6263
measurement = 21        19
groundtruth = 20        20
step 2
estimation  = 31.4545   35.5006
measurement = 32        42
groundtruth = 35        40
step 3
estimation  = 47.0763   53.7411
measurement = 53        56
groundtruth = 50        55
step 4
estimation  = 67.6291   69.0154
measurement = 74        66
groundtruth = 70        65
step 5
estimation  = 85.0584   81.1424
measurement = 81        78
groundtruth = 80        80
step 6
estimation  = 99.669    90.634
measurement = 96        88
groundtruth = 100        90



posted by maetel
2009. 10. 22. 16:53 Computer Vision
Probabilistic Robotics
Sebastian Thrun, Wolfram Burgard and Dieter Fox
MIT Press, September 2005



Preface     xvii    
Acknowledgments    xix
I    Basics    1
1    Introduction     3
2    Recursive State Estimation    13
3    Gaussian Filters    39
4    Nonparametric Filters    85
5    Robot Motion    117
6    Robot Perception    149
II    Localization    189
7    Mobile Robot Localization: Markov and Gaussian    191
8    Mobile Robot Localization: Grid And Monte Carlo    237
III    Mapping    279
9    Occupancy Grid Mapping    281
10    Simultaneous Localization and Mapping    309
11    The GraphSLAM Algorithm    337
12    The Sparse Extended Information Filter    385
13    The FastSLAM Algorithm    437
IV    Planning and Control    485
14    Markov Decision Processes    487
15    Partially Observable Markov Decision Processes    513
16    Approximate POMDP Techniques    547
17    Exploration    569    
Bibliography    607   
Index     639


Probability robotics is a subfield of robotics concerned with perception and control.

Introduction

probabilistic robotics
: explicit representation of uncertainty using the calculus of probability theory

perception
action

Bayes filters are a probabilistic tool for estimating the state of dynamic systems.





Bayes Filters are Familiar!
• Kalman filters
• Particle filters
• Hidden Markov models
• Dynamic Bayesian networks
• Partially Observable Markov Decision Processes (POMDPs)


Kalman filter

Gaussian filter

discrete Kalman filter


Kalman filter update in 1-D

correction

prediction



Kalman filter algorithm


EKF = extended Kalman filter
: calculates a Gaussian approximation to the true belief.

Taylor series expansion
"Linearization approximates the nonlinear function g by a linear function that is tangent to g at the mean of the Gaussian."











SLAM





Techniques for Generating Consistent Maps
• Scan matching
• EKF SLAM
• Fast-SLAM
• Probabilistic mapping with a single map and a posterior about poses Mapping + Localization
• Graph-SLAM, SEIFs

Approximations for SLAM
• Local submaps
[Leonard et al.99, Bosse et al. 02, Newman et al. 03]
• Sparse links (correlations)
[Lu & Milios 97, Guivant & Nebot 01]
• Sparse extended information filters
[Frese et al. 01, Thrun et al. 02]
• Thin junction tree filters
[Paskin 03]
• Rao-Blackwellisation (FastSLAM)
[Murphy 99, Montemerlo et al. 02, Eliazar et al. 03, Haehnel et al. 03]

EKF-SLAM Summary
•Quadratic in the number of landmarks: O(n2)
• Convergence results for the linear case.
• Can diverge if nonlinearities are large!
• Have been applied successfully in large-scale environments.
• Approximations reduce the computational complexity.


ch8

eg. Xavier - Localization in a topological map
ref.  Probabilistic Robot Navigation in Partially Observable Environments 
Reid Simmons and Sven Koenig
Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI '95), July, 1995, pp. 1080 - 1087.
  • Open Link in New Tab
  • Download
posted by maetel
2009. 7. 30. 21:12 Computer Vision
Dan Simon 
http://academic.csuohio.edu/simond/
- Kalman Filetering, 72-79p, Embedded Systems Programming f e a tur e, JUNE 2001
http://leeway.tistory.com/728 : 가장 쉽고 간략한 설명 (매트랩 예제와 C로 구현한 칼만 필터 소스 포함)
- Kalman Filtering with State Constraints: A Survey of Linear and Nonlinear Algorithms
http://academic.csuohio.edu/simond/ConstrKF/
- Kalman Filtering
http://www.innovatia.com/software/papers/kalman.htm
- book: Optimal state estimation: Kalman, H [infinity] and nonlinear approaches
http://academic.csuohio.edu/simond/estimation/


Greg Welch and Gary Bishop
Kalman filter
http://www.cs.unc.edu/~welch/kalman/index.html
- SIGGRAPH 2001 Courses Course 8 - An Introduction to the Kalman Filter
http://www.cs.unc.edu/~tracker/ref/s2001/kalman/index.html


Kalman Filters in the MRPT
http://babel.isa.uma.es/mrpt/index.php/Kalman_Filters


Taygeta Scientific
Kalman filter information
http://www.taygeta.com/kalman.html


http://en.wikipedia.org/wiki/Kalman_filter

A New Approach to Linear Filtering and Prediction Problems, by R. E. Kalman, 1960


Rudy Negenborn
Robot Localization and Kalman Filters: On finding your position in a noisy world
http://leeway.tistory.com/696


용가리@네이버: 칼만 필터 - part 1 & part 2


'Computer Vision' 카테고리의 다른 글

PTAM test log on Mac OS X  (7) 2009.08.05
SLAM related generally  (0) 2009.08.04
OpenCV 1.0 설치 on Mac OS X  (0) 2009.07.27
cameras on mac os x  (0) 2009.07.27
Brian Williams, Georg Klein and Ian Reid <Real-Time SLAM Relocalisation>  (0) 2009.07.23
posted by maetel
2009. 3. 27. 21:33 Computer Vision

Scalable Monocular SLAM
Eade, E.   Drummond, T.  
Cambridge University;

This paper appears in: Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on
Publication Date: 17-22 June 2006
Volume: 1,  On page(s): 469- 476
ISSN: 1063-6919
ISBN: 0-7695-2597-0
Digital Object Identifier: 10.1109/CVPR.2006.263
Current Version Published: 2006-07-05

 
Ethan Eade & Tom Drummond
Machine Intelligence Laboratory
the Division of Information Engineering at Cambridge University Engineering Department




monocular SLAM
particle filter + top-down search => real-time, large number  of landmarks

the first to apply this FastSLAM-type particle filter to single-camera SLAM


1. Introduction


SLAM = Simultaneous Localization and Mapping
: process of causally estimating both egomotion and structure in an online system

 SLAM using visual data in computer vision

SFM (= structure from motion): reconstructing scene geometry
+ causal or recursive estimation techniques

perspective-projection cameras

filtering methods to allow indirect observation models

Kalman filtering framework

Extended Kalman filter = EKF (-> to linearize the observation and dynamics models of the system)

causal estimation with recursive algorithms (cp. estimation depending only on observations up to the current time)
=> online operation (cp. SFM on global nonlinear optimization)


Davision's SLAM with a single camera
> EKF estimation framework
> top-down Bayesian estimation approach searching for landmarks in image regions constrained by estimate > uncertainty (instead of performing extensive bottom-up image processing and feature matching)
> Bayesian partial-initialization scheme for incorporating new landmarks
- cannot scale to large environment


EKF = the Extended Kalman filter
-  N*N covariace matrix for N landmarks
- updated with N*N computation cost

> SLAM system using a single camera as the only sensor
> frame-rate operation with many landmarks
> FastSLAM-style particle filter (the first use of such an approach in a monocular SLAM setting)
> top-down active search
> an efficient algorithm for discovering the depth of new landmarks that avoids linearization errors
> a novel method for using partially initialized landmarks to help constrain camera pose


FastSLAM
: based on the Rao-Blackwellized Particle Filter

2. Background

2.1 Scalable SLAM

> submap
bounded complexity -> bounded computation and space requirements

Montemerlo & Thrun
If the entire camera motion is known then the estimates of the positions of different landmarks become independent of each other.







Rao-Blackwellized Particle Filter



ZNCC = the Zero mean Normalized Cross-Correlation function epipolar constraint


epipolar constraint

http://en.wikipedia.org/wiki/Epipolar_geometry


posted by maetel